Properties

Degree 2
Conductor $ 3 \cdot 5^{2} \cdot 7 $
Sign $-0.557 + 0.830i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 − 0.258i)3-s + (1.73 − i)4-s + (−2.63 − 0.189i)7-s + (0.866 + 0.499i)9-s + (−3 − 5.19i)11-s + (−1.93 + 0.517i)12-s + (−1.41 + 1.41i)13-s + (1.99 − 3.46i)16-s + (1.55 − 5.79i)17-s + (−1.73 + 3i)19-s + (2.50 + 0.866i)21-s + (−0.707 − 0.707i)27-s + (−4.76 + 2.31i)28-s + (−4.5 + 2.59i)31-s + (1.55 + 5.79i)33-s + ⋯
L(s)  = 1  + (−0.557 − 0.149i)3-s + (0.866 − 0.5i)4-s + (−0.997 − 0.0716i)7-s + (0.288 + 0.166i)9-s + (−0.904 − 1.56i)11-s + (−0.557 + 0.149i)12-s + (−0.392 + 0.392i)13-s + (0.499 − 0.866i)16-s + (0.376 − 1.40i)17-s + (−0.397 + 0.688i)19-s + (0.545 + 0.188i)21-s + (−0.136 − 0.136i)27-s + (−0.899 + 0.436i)28-s + (−0.808 + 0.466i)31-s + (0.270 + 1.00i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.557 + 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.557 + 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.557 + 0.830i$
motivic weight  =  \(1\)
character  :  $\chi_{525} (418, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 525,\ (\ :1/2),\ -0.557 + 0.830i)$
$L(1)$  $\approx$  $0.427784 - 0.802092i$
$L(\frac12)$  $\approx$  $0.427784 - 0.802092i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (0.965 + 0.258i)T \)
5 \( 1 \)
7 \( 1 + (2.63 + 0.189i)T \)
good2 \( 1 + (-1.73 + i)T^{2} \)
11 \( 1 + (3 + 5.19i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (1.41 - 1.41i)T - 13iT^{2} \)
17 \( 1 + (-1.55 + 5.79i)T + (-14.7 - 8.5i)T^{2} \)
19 \( 1 + (1.73 - 3i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (19.9 - 11.5i)T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + (4.5 - 2.59i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.24 + 8.36i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + 10.3iT - 41T^{2} \)
43 \( 1 + (-3.67 - 3.67i)T + 43iT^{2} \)
47 \( 1 + (5.79 - 1.55i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (-2.68 + 10.0i)T + (-45.8 - 26.5i)T^{2} \)
59 \( 1 + (-5.19 - 9i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-7.5 - 4.33i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-3.34 - 0.896i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + (-0.965 - 0.258i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (4.33 + 2.5i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-4.24 + 4.24i)T - 83iT^{2} \)
89 \( 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-9.19 - 9.19i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.61605921156715170939257648535, −9.938449096621313867284756950707, −8.882490729351416046462987399543, −7.53750383937065199442356792049, −6.85979835171943656426620616012, −5.83970684961632803735877983253, −5.33896798165960565115761826201, −3.51564662680074924093609276015, −2.41663640039743755558624071599, −0.52425848865602382620456819157, 2.07940811170143476097044867019, 3.25391789292548959715191719530, 4.52423455768890817243656155478, 5.75227279592735089331149928631, 6.67062210862637416408503932004, 7.37360758713515432111311128443, 8.324346698243193638904788689130, 9.779931909256065842739380770707, 10.24245426382331027179787895807, 11.11032522334610813561189261450

Graph of the $Z$-function along the critical line