| L(s) = 1 | − 1.73i·5-s + 3.61·7-s − 0.734i·11-s − 0.609i·13-s + 5.52·17-s + 2i·19-s + 4.73·23-s + 2.00·25-s + 7.83i·29-s − 9.41·31-s − 6.25i·35-s + 2.34i·37-s + 8.52·41-s + 10.2i·43-s + 11.7·47-s + ⋯ |
| L(s) = 1 | − 0.774i·5-s + 1.36·7-s − 0.221i·11-s − 0.169i·13-s + 1.33·17-s + 0.458i·19-s + 0.987·23-s + 0.400·25-s + 1.45i·29-s − 1.69·31-s − 1.05i·35-s + 0.384i·37-s + 1.33·41-s + 1.56i·43-s + 1.71·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.632663059\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.632663059\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 - 3.61T + 7T^{2} \) |
| 11 | \( 1 + 0.734iT - 11T^{2} \) |
| 13 | \( 1 + 0.609iT - 13T^{2} \) |
| 17 | \( 1 - 5.52T + 17T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 - 4.73T + 23T^{2} \) |
| 29 | \( 1 - 7.83iT - 29T^{2} \) |
| 31 | \( 1 + 9.41T + 31T^{2} \) |
| 37 | \( 1 - 2.34iT - 37T^{2} \) |
| 41 | \( 1 - 8.52T + 41T^{2} \) |
| 43 | \( 1 - 10.2iT - 43T^{2} \) |
| 47 | \( 1 - 11.7T + 47T^{2} \) |
| 53 | \( 1 + 13.0iT - 53T^{2} \) |
| 59 | \( 1 - 1.20iT - 59T^{2} \) |
| 61 | \( 1 - 11.3iT - 61T^{2} \) |
| 67 | \( 1 + 6.31iT - 67T^{2} \) |
| 71 | \( 1 + 2.63T + 71T^{2} \) |
| 73 | \( 1 + 2.05T + 73T^{2} \) |
| 79 | \( 1 - 2.49T + 79T^{2} \) |
| 83 | \( 1 - 12.2iT - 83T^{2} \) |
| 89 | \( 1 - 1.94T + 89T^{2} \) |
| 97 | \( 1 + 15.5T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.136937706011489603896750431262, −7.63655374575917053762182000808, −6.91173785816293684234491364539, −5.65228525521903227030158106349, −5.32713029324441317400327208148, −4.64276489632837592105105033285, −3.75908749073140880305992424836, −2.81679148557306438096113187637, −1.53724134964069856032267174280, −1.02437140318962088342965296932,
0.909925093846414396776528693836, 1.99950505746416678884163359544, 2.78856211513326535314365198184, 3.79172045498339632596712959612, 4.54970648829569612454877848409, 5.41174445631963234512796427054, 5.92621351592753190205941737443, 7.16197146145094541306381541861, 7.36710573610739514473693460488, 8.098757154731334963379010785861