| L(s) = 1 | + 3.46i·5-s − 3i·11-s − 3.46i·13-s + 3·17-s + 7i·19-s − 3.46·23-s − 6.99·25-s − 6.92i·29-s − 6.92·31-s − 10.3i·37-s − 3·41-s + 5i·43-s − 3.46·47-s − 7·49-s − 13.8i·53-s + ⋯ |
| L(s) = 1 | + 1.54i·5-s − 0.904i·11-s − 0.960i·13-s + 0.727·17-s + 1.60i·19-s − 0.722·23-s − 1.39·25-s − 1.28i·29-s − 1.24·31-s − 1.70i·37-s − 0.468·41-s + 0.762i·43-s − 0.505·47-s − 49-s − 1.90i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.6063052696\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6063052696\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 3.46iT - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 3iT - 11T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 - 7iT - 19T^{2} \) |
| 23 | \( 1 + 3.46T + 23T^{2} \) |
| 29 | \( 1 + 6.92iT - 29T^{2} \) |
| 31 | \( 1 + 6.92T + 31T^{2} \) |
| 37 | \( 1 + 10.3iT - 37T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 5iT - 43T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 + 13.8iT - 53T^{2} \) |
| 59 | \( 1 + 9iT - 59T^{2} \) |
| 61 | \( 1 - 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 5iT - 67T^{2} \) |
| 71 | \( 1 - 3.46T + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 + 17.3T + 79T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 - T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.913578928086096501148644980707, −7.40292273558658904960746319097, −6.46829534214700945962338046995, −5.87191459806522663223959825102, −5.42132526625446890216272544740, −3.87966230575842623350765032061, −3.50292368981190996222767589710, −2.72127008149144278018355967896, −1.73250735540054602263648648321, −0.15856651861005386993742275142,
1.24087962143846434947256731216, 1.89833769763077739653451697571, 3.14791377463458503309007706653, 4.23407018868307354391966125510, 4.78947827808530031307629042212, 5.25202730077320358944092362033, 6.25744943957183932847864289414, 7.09988582065497167425131429381, 7.67052299236597057984919401326, 8.682578307334547244748398175111