| L(s) = 1 | − 3.46i·5-s − 3i·11-s + 3.46i·13-s + 3·17-s + 7i·19-s + 3.46·23-s − 6.99·25-s + 6.92i·29-s + 6.92·31-s + 10.3i·37-s − 3·41-s + 5i·43-s + 3.46·47-s − 7·49-s + 13.8i·53-s + ⋯ |
| L(s) = 1 | − 1.54i·5-s − 0.904i·11-s + 0.960i·13-s + 0.727·17-s + 1.60i·19-s + 0.722·23-s − 1.39·25-s + 1.28i·29-s + 1.24·31-s + 1.70i·37-s − 0.468·41-s + 0.762i·43-s + 0.505·47-s − 49-s + 1.90i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.801817929\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.801817929\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + 3.46iT - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 3iT - 11T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 - 7iT - 19T^{2} \) |
| 23 | \( 1 - 3.46T + 23T^{2} \) |
| 29 | \( 1 - 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 6.92T + 31T^{2} \) |
| 37 | \( 1 - 10.3iT - 37T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 5iT - 43T^{2} \) |
| 47 | \( 1 - 3.46T + 47T^{2} \) |
| 53 | \( 1 - 13.8iT - 53T^{2} \) |
| 59 | \( 1 + 9iT - 59T^{2} \) |
| 61 | \( 1 + 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 5iT - 67T^{2} \) |
| 71 | \( 1 + 3.46T + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 - 17.3T + 79T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 - T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216566379501256770310523360657, −7.87214962294971078658712979525, −6.66088056850655419594289079331, −6.04416102699831295205526551652, −5.19037312646676671436744835861, −4.71371825477862558385384338227, −3.81178842245117194613814933111, −3.00894750405957261778479864323, −1.53265288700376245641843406697, −1.06834977283347594720119136424,
0.55255197755816318459666949313, 2.15942681793787415171889032176, 2.79305102560338683598428018205, 3.47879435512423321146890355081, 4.48052089464157977807447056244, 5.31845940535296354202389363180, 6.15054483097042206181872647134, 6.87798450915467039462594021458, 7.35291023479982293502657239801, 7.944817097969424267925946916462