L(s) = 1 | + 5-s − 3·7-s + 2·11-s − 5·13-s − 5·17-s + 7·19-s − 5·23-s − 25-s + 3·29-s − 7·31-s − 3·35-s − 6·37-s − 12·41-s + 8·43-s − 3·47-s + 49-s + 10·53-s + 2·55-s + 14·59-s + 61-s − 5·65-s + 4·67-s + 8·71-s − 7·73-s − 6·77-s + 7·79-s + 25·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.13·7-s + 0.603·11-s − 1.38·13-s − 1.21·17-s + 1.60·19-s − 1.04·23-s − 1/5·25-s + 0.557·29-s − 1.25·31-s − 0.507·35-s − 0.986·37-s − 1.87·41-s + 1.21·43-s − 0.437·47-s + 1/7·49-s + 1.37·53-s + 0.269·55-s + 1.82·59-s + 0.128·61-s − 0.620·65-s + 0.488·67-s + 0.949·71-s − 0.819·73-s − 0.683·77-s + 0.787·79-s + 2.74·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.438297158\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.438297158\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.321283515254136534043356839556, −8.138629231776818740532688947296, −7.46624840873072606194571742725, −7.31347578766262663028993235959, −6.79010531190910557146903464271, −6.78772959649858258659454661174, −6.31132996824127025193929782001, −5.87388744257627378641659435332, −5.39104718504408689768664076557, −5.27119743145281330252013925459, −4.75408885331378748183654761453, −4.36531067291270112550403562757, −3.70762889340938545267862313589, −3.56362469534500090667721351235, −3.17599333462056849505940543695, −2.51315983834014644421953462582, −2.05473703962203636975436807099, −1.94523409503151156779672443085, −0.948106115100228775667493297987, −0.36310467537596153058026890106,
0.36310467537596153058026890106, 0.948106115100228775667493297987, 1.94523409503151156779672443085, 2.05473703962203636975436807099, 2.51315983834014644421953462582, 3.17599333462056849505940543695, 3.56362469534500090667721351235, 3.70762889340938545267862313589, 4.36531067291270112550403562757, 4.75408885331378748183654761453, 5.27119743145281330252013925459, 5.39104718504408689768664076557, 5.87388744257627378641659435332, 6.31132996824127025193929782001, 6.78772959649858258659454661174, 6.79010531190910557146903464271, 7.31347578766262663028993235959, 7.46624840873072606194571742725, 8.138629231776818740532688947296, 8.321283515254136534043356839556