Properties

Label 4-72e4-1.1-c1e2-0-17
Degree $4$
Conductor $26873856$
Sign $1$
Analytic cond. $1713.50$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 6·13-s + 8·17-s + 5·25-s + 4·29-s − 2·37-s + 16·41-s − 14·49-s − 8·53-s − 10·61-s + 24·65-s − 6·73-s − 32·85-s + 16·89-s − 36·97-s − 40·101-s − 6·109-s + 16·113-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.66·13-s + 1.94·17-s + 25-s + 0.742·29-s − 0.328·37-s + 2.49·41-s − 2·49-s − 1.09·53-s − 1.28·61-s + 2.97·65-s − 0.702·73-s − 3.47·85-s + 1.69·89-s − 3.65·97-s − 3.98·101-s − 0.574·109-s + 1.50·113-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1713.50\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26873856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 4 T - 13 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 10 T + 39 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 6 T - 37 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 16 T + 167 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85248809531755222527953073107, −7.80943779052706560209886633236, −7.38924459704379828540474071132, −7.21360677544327579626231383455, −6.59394465722425304341457255592, −6.41374109088574289489989260190, −5.63394505049767488379471453001, −5.59410678323158743238873034474, −5.02706023483313582911087032764, −4.58346329669266778116916996326, −4.38027692872652530015933425313, −3.97200775638225143695706534016, −3.43868104002429363539047202533, −3.16379874924908033649163286040, −2.72355090716680571135290985428, −2.33505517931353462318356823933, −1.39666520891756105457675568358, −1.09925122458770635824964610866, 0, 0, 1.09925122458770635824964610866, 1.39666520891756105457675568358, 2.33505517931353462318356823933, 2.72355090716680571135290985428, 3.16379874924908033649163286040, 3.43868104002429363539047202533, 3.97200775638225143695706534016, 4.38027692872652530015933425313, 4.58346329669266778116916996326, 5.02706023483313582911087032764, 5.59410678323158743238873034474, 5.63394505049767488379471453001, 6.41374109088574289489989260190, 6.59394465722425304341457255592, 7.21360677544327579626231383455, 7.38924459704379828540474071132, 7.80943779052706560209886633236, 7.85248809531755222527953073107

Graph of the $Z$-function along the critical line