L(s) = 1 | + (−0.923 + 0.382i)2-s + (0.555 − 0.831i)3-s + (0.707 − 0.707i)4-s + (−1.07 + 1.96i)5-s + (−0.195 + 0.980i)6-s + (−0.251 + 1.26i)7-s + (−0.382 + 0.923i)8-s + (−0.382 − 0.923i)9-s + (0.241 − 2.22i)10-s + (−6.22 − 1.23i)11-s + (−0.195 − 0.980i)12-s − 0.969·13-s + (−0.251 − 1.26i)14-s + (1.03 + 1.98i)15-s − i·16-s + (−3.91 − 1.28i)17-s + ⋯ |
L(s) = 1 | + (−0.653 + 0.270i)2-s + (0.320 − 0.480i)3-s + (0.353 − 0.353i)4-s + (−0.480 + 0.877i)5-s + (−0.0796 + 0.400i)6-s + (−0.0951 + 0.478i)7-s + (−0.135 + 0.326i)8-s + (−0.127 − 0.307i)9-s + (0.0765 − 0.702i)10-s + (−1.87 − 0.373i)11-s + (−0.0563 − 0.283i)12-s − 0.268·13-s + (−0.0673 − 0.338i)14-s + (0.266 + 0.511i)15-s − 0.250i·16-s + (−0.950 − 0.311i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00406001 - 0.0568935i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00406001 - 0.0568935i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 - 0.382i)T \) |
| 3 | \( 1 + (-0.555 + 0.831i)T \) |
| 5 | \( 1 + (1.07 - 1.96i)T \) |
| 17 | \( 1 + (3.91 + 1.28i)T \) |
good | 7 | \( 1 + (0.251 - 1.26i)T + (-6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (6.22 + 1.23i)T + (10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 + 0.969T + 13T^{2} \) |
| 19 | \( 1 + (-0.720 + 1.73i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-2.44 + 1.63i)T + (8.80 - 21.2i)T^{2} \) |
| 29 | \( 1 + (1.47 + 0.984i)T + (11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + (8.50 - 1.69i)T + (28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (-6.78 - 4.53i)T + (14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (8.11 - 5.42i)T + (15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (3.41 + 1.41i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 3.12iT - 47T^{2} \) |
| 53 | \( 1 + (-4.27 - 10.3i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (7.80 - 3.23i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (8.24 + 12.3i)T + (-23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + (6.33 + 6.33i)T + 67iT^{2} \) |
| 71 | \( 1 + (-1.19 - 5.99i)T + (-65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (-1.92 - 9.68i)T + (-67.4 + 27.9i)T^{2} \) |
| 79 | \( 1 + (0.614 - 3.08i)T + (-72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (-15.9 + 6.59i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (0.492 - 0.492i)T - 89iT^{2} \) |
| 97 | \( 1 + (-1.77 - 8.91i)T + (-89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08302692363162516536155574471, −10.59819401539888627789525173053, −9.480338524147640629262296926711, −8.523722988521338216446330866979, −7.74037655834101411293986426619, −7.08706308057252636217811614605, −6.10177716802527342615656330215, −4.94402493837215330205952405548, −3.08522484291457951915343621710, −2.34290177428959811573774581076,
0.03659613973925145654871300714, 2.07367790161958497179406677951, 3.47726927028781112651629514839, 4.59912789375683241600938532459, 5.52804001312830469178545075010, 7.28978794986944112572692882432, 7.82922426627525985567715324767, 8.747280095314621108127252961382, 9.502449506544650120705701692140, 10.45775001012187658814548959625