| L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 2·7-s − 8-s + 9-s − 10-s + 4·11-s + 12-s + 2·14-s + 15-s + 16-s + 17-s − 18-s + 4·19-s + 20-s − 2·21-s − 4·22-s + 4·23-s − 24-s + 25-s + 27-s − 2·28-s + 6·29-s − 30-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s + 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.436·21-s − 0.852·22-s + 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.377·28-s + 1.11·29-s − 0.182·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.380011565\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.380011565\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 - T \) | |
| 17 | \( 1 - T \) | |
| good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae |
| 13 | \( 1 + p T^{2} \) | 1.13.a |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i |
| 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g |
| 41 | \( 1 - 8 T + p T^{2} \) | 1.41.ai |
| 43 | \( 1 - 2 T + p T^{2} \) | 1.43.ac |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 - 14 T + p T^{2} \) | 1.53.ao |
| 59 | \( 1 - 6 T + p T^{2} \) | 1.59.ag |
| 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac |
| 67 | \( 1 - 2 T + p T^{2} \) | 1.67.ac |
| 71 | \( 1 + 10 T + p T^{2} \) | 1.71.k |
| 73 | \( 1 - 4 T + p T^{2} \) | 1.73.ae |
| 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae |
| 83 | \( 1 + 16 T + p T^{2} \) | 1.83.q |
| 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag |
| 97 | \( 1 + 8 T + p T^{2} \) | 1.97.i |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66454693191941906938010998363, −9.705414422062269312376303419664, −9.262790822871431116905455789582, −8.460587180659287789023524369194, −7.22402453499958192994842573711, −6.62178547773589028024450176812, −5.45278869859695855103755921266, −3.82856825515737096630769395054, −2.79362404487741526963704356029, −1.30281589001363883769401156083,
1.30281589001363883769401156083, 2.79362404487741526963704356029, 3.82856825515737096630769395054, 5.45278869859695855103755921266, 6.62178547773589028024450176812, 7.22402453499958192994842573711, 8.460587180659287789023524369194, 9.262790822871431116905455789582, 9.705414422062269312376303419664, 10.66454693191941906938010998363