Properties

Label 2-507-1.1-c3-0-9
Degree $2$
Conductor $507$
Sign $1$
Analytic cond. $29.9139$
Root an. cond. $5.46936$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.82·2-s − 3·3-s + 6.63·4-s + 0.275·5-s + 11.4·6-s + 0.0981·7-s + 5.20·8-s + 9·9-s − 1.05·10-s − 0.749·11-s − 19.9·12-s − 0.375·14-s − 0.826·15-s − 73.0·16-s + 53.7·17-s − 34.4·18-s + 145.·19-s + 1.82·20-s − 0.294·21-s + 2.86·22-s + 29.3·23-s − 15.6·24-s − 124.·25-s − 27·27-s + 0.651·28-s − 267.·29-s + 3.16·30-s + ⋯
L(s)  = 1  − 1.35·2-s − 0.577·3-s + 0.829·4-s + 0.0246·5-s + 0.781·6-s + 0.00529·7-s + 0.230·8-s + 0.333·9-s − 0.0333·10-s − 0.0205·11-s − 0.479·12-s − 0.00716·14-s − 0.0142·15-s − 1.14·16-s + 0.767·17-s − 0.450·18-s + 1.75·19-s + 0.0204·20-s − 0.00305·21-s + 0.0278·22-s + 0.266·23-s − 0.132·24-s − 0.999·25-s − 0.192·27-s + 0.00439·28-s − 1.71·29-s + 0.0192·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(29.9139\)
Root analytic conductor: \(5.46936\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6736646036\)
\(L(\frac12)\) \(\approx\) \(0.6736646036\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
13 \( 1 \)
good2 \( 1 + 3.82T + 8T^{2} \)
5 \( 1 - 0.275T + 125T^{2} \)
7 \( 1 - 0.0981T + 343T^{2} \)
11 \( 1 + 0.749T + 1.33e3T^{2} \)
17 \( 1 - 53.7T + 4.91e3T^{2} \)
19 \( 1 - 145.T + 6.85e3T^{2} \)
23 \( 1 - 29.3T + 1.21e4T^{2} \)
29 \( 1 + 267.T + 2.43e4T^{2} \)
31 \( 1 + 51.5T + 2.97e4T^{2} \)
37 \( 1 + 133.T + 5.06e4T^{2} \)
41 \( 1 - 430.T + 6.89e4T^{2} \)
43 \( 1 + 282.T + 7.95e4T^{2} \)
47 \( 1 + 212.T + 1.03e5T^{2} \)
53 \( 1 - 573.T + 1.48e5T^{2} \)
59 \( 1 - 495.T + 2.05e5T^{2} \)
61 \( 1 + 310.T + 2.26e5T^{2} \)
67 \( 1 + 103.T + 3.00e5T^{2} \)
71 \( 1 + 203.T + 3.57e5T^{2} \)
73 \( 1 + 685.T + 3.89e5T^{2} \)
79 \( 1 - 636.T + 4.93e5T^{2} \)
83 \( 1 - 506.T + 5.71e5T^{2} \)
89 \( 1 - 700.T + 7.04e5T^{2} \)
97 \( 1 - 874.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22214709207844841795584025189, −9.680214602696116754287965489778, −8.896995555856797845425437451628, −7.66108594470037633652550798885, −7.33362651257343420853676679591, −5.95610191581853071431427226344, −5.01645338434532951041943873691, −3.54921232293870494391195718479, −1.80303940809505988019019324902, −0.65879724760744432710805663340, 0.65879724760744432710805663340, 1.80303940809505988019019324902, 3.54921232293870494391195718479, 5.01645338434532951041943873691, 5.95610191581853071431427226344, 7.33362651257343420853676679591, 7.66108594470037633652550798885, 8.896995555856797845425437451628, 9.680214602696116754287965489778, 10.22214709207844841795584025189

Graph of the $Z$-function along the critical line