Properties

Label 2-507-169.4-c1-0-8
Degree $2$
Conductor $507$
Sign $0.987 - 0.159i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.208 − 0.00838i)2-s + (−0.278 + 0.960i)3-s + (−1.95 − 0.157i)4-s + (−1.53 − 0.583i)5-s + (0.0659 − 0.197i)6-s + (−0.815 − 1.91i)7-s + (0.818 + 0.0993i)8-s + (−0.845 − 0.534i)9-s + (0.315 + 0.134i)10-s + (1.34 + 2.13i)11-s + (0.693 − 1.82i)12-s + (1.58 + 3.23i)13-s + (0.153 + 0.405i)14-s + (0.987 − 1.31i)15-s + (3.69 + 0.600i)16-s + (5.49 − 2.34i)17-s + ⋯
L(s)  = 1  + (−0.147 − 0.00593i)2-s + (−0.160 + 0.554i)3-s + (−0.975 − 0.0787i)4-s + (−0.687 − 0.260i)5-s + (0.0269 − 0.0806i)6-s + (−0.308 − 0.723i)7-s + (0.289 + 0.0351i)8-s + (−0.281 − 0.178i)9-s + (0.0996 + 0.0424i)10-s + (0.406 + 0.643i)11-s + (0.200 − 0.528i)12-s + (0.439 + 0.898i)13-s + (0.0410 + 0.108i)14-s + (0.255 − 0.339i)15-s + (0.923 + 0.150i)16-s + (1.33 − 0.567i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.159i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $0.987 - 0.159i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 0.987 - 0.159i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.864140 + 0.0693763i\)
\(L(\frac12)\) \(\approx\) \(0.864140 + 0.0693763i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.278 - 0.960i)T \)
13 \( 1 + (-1.58 - 3.23i)T \)
good2 \( 1 + (0.208 + 0.00838i)T + (1.99 + 0.160i)T^{2} \)
5 \( 1 + (1.53 + 0.583i)T + (3.74 + 3.31i)T^{2} \)
7 \( 1 + (0.815 + 1.91i)T + (-4.84 + 5.04i)T^{2} \)
11 \( 1 + (-1.34 - 2.13i)T + (-4.71 + 9.93i)T^{2} \)
17 \( 1 + (-5.49 + 2.34i)T + (11.7 - 12.2i)T^{2} \)
19 \( 1 + (0.388 - 0.224i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.86 + 6.69i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.198 - 4.92i)T + (-28.9 - 2.33i)T^{2} \)
31 \( 1 + (-4.74 - 5.36i)T + (-3.73 + 30.7i)T^{2} \)
37 \( 1 + (-8.46 + 1.72i)T + (34.0 - 14.5i)T^{2} \)
41 \( 1 + (-2.43 - 0.705i)T + (34.6 + 21.9i)T^{2} \)
43 \( 1 + (1.69 - 8.28i)T + (-39.5 - 16.8i)T^{2} \)
47 \( 1 + (-1.89 + 1.30i)T + (16.6 - 43.9i)T^{2} \)
53 \( 1 + (-0.771 + 6.35i)T + (-51.4 - 12.6i)T^{2} \)
59 \( 1 + (1.36 + 8.40i)T + (-55.9 + 18.6i)T^{2} \)
61 \( 1 + (10.2 - 7.72i)T + (16.9 - 58.5i)T^{2} \)
67 \( 1 + (-0.919 - 11.3i)T + (-66.1 + 10.7i)T^{2} \)
71 \( 1 + (-10.8 + 10.3i)T + (2.85 - 70.9i)T^{2} \)
73 \( 1 + (-0.199 + 0.379i)T + (-41.4 - 60.0i)T^{2} \)
79 \( 1 + (8.80 + 12.7i)T + (-28.0 + 73.8i)T^{2} \)
83 \( 1 + (-2.34 + 9.53i)T + (-73.4 - 38.5i)T^{2} \)
89 \( 1 + (-14.7 - 8.51i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.01 - 4.09i)T + (19.4 + 95.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73502951407730274029333078173, −9.965140286743696670540943051778, −9.246106812868033584496267733205, −8.412595247668007326489126252654, −7.43338906641410936187286964252, −6.33050451589026710468552127953, −4.85445710718832893634147153367, −4.34148892689959392114132893960, −3.37803939150795790981648989535, −0.898337788543623820227341573121, 0.922988082584719200622009656292, 3.06785715775811824236526062432, 3.95123378676884247383966814183, 5.50542816373119680720528399645, 6.04397787270281932051302461703, 7.65453809000826013561364589920, 8.026438281455899081841112708812, 9.050780310547517724543891075371, 9.859925991178386137304162217691, 11.00353670828385778375702144087

Graph of the $Z$-function along the critical line