Properties

Label 4-507e2-1.1-c0e2-0-1
Degree $4$
Conductor $257049$
Sign $1$
Analytic cond. $0.0640221$
Root an. cond. $0.503016$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 12-s − 2·25-s − 27-s − 2·43-s − 49-s + 2·61-s − 64-s − 2·75-s − 4·79-s − 81-s − 2·100-s + 4·103-s − 108-s + 121-s + 127-s − 2·129-s + 131-s + 137-s + 139-s − 147-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3-s + 4-s + 12-s − 2·25-s − 27-s − 2·43-s − 49-s + 2·61-s − 64-s − 2·75-s − 4·79-s − 81-s − 2·100-s + 4·103-s − 108-s + 121-s + 127-s − 2·129-s + 131-s + 137-s + 139-s − 147-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(257049\)    =    \(3^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.0640221\)
Root analytic conductor: \(0.503016\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 257049,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.187138105\)
\(L(\frac12)\) \(\approx\) \(1.187138105\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
13 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$ \( ( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44895139159288995580079601776, −11.11886424873715407517357760874, −10.20845153979420460309348321019, −10.04713579963038427843560085613, −9.715119311473587752385605383509, −9.011768506709543287781317351895, −8.619170204653682386944463403602, −8.282063256949368370755606003582, −7.64778581848165550263809601842, −7.47486373456697764431656940157, −6.78226750023478199095015630063, −6.45163948241996375246769418140, −5.75358915284655606257774059667, −5.46928895015017093649496777937, −4.55170743068002638995567224754, −4.04570128725164222587001565108, −3.25510376772767607229686246654, −3.01664450915322485633931603272, −1.97836346568506537680213813821, −1.90836237988088961761687891822, 1.90836237988088961761687891822, 1.97836346568506537680213813821, 3.01664450915322485633931603272, 3.25510376772767607229686246654, 4.04570128725164222587001565108, 4.55170743068002638995567224754, 5.46928895015017093649496777937, 5.75358915284655606257774059667, 6.45163948241996375246769418140, 6.78226750023478199095015630063, 7.47486373456697764431656940157, 7.64778581848165550263809601842, 8.282063256949368370755606003582, 8.619170204653682386944463403602, 9.011768506709543287781317351895, 9.715119311473587752385605383509, 10.04713579963038427843560085613, 10.20845153979420460309348321019, 11.11886424873715407517357760874, 11.44895139159288995580079601776

Graph of the $Z$-function along the critical line