Properties

Label 4-5054e2-1.1-c1e2-0-3
Degree $4$
Conductor $25542916$
Sign $1$
Analytic cond. $1628.63$
Root an. cond. $6.35266$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 3·4-s + 5-s − 6·6-s + 2·7-s + 4·8-s + 2·9-s + 2·10-s + 7·11-s − 9·12-s − 6·13-s + 4·14-s − 3·15-s + 5·16-s − 4·17-s + 4·18-s + 3·20-s − 6·21-s + 14·22-s + 2·23-s − 12·24-s + 2·25-s − 12·26-s + 6·27-s + 6·28-s + 11·29-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.73·3-s + 3/2·4-s + 0.447·5-s − 2.44·6-s + 0.755·7-s + 1.41·8-s + 2/3·9-s + 0.632·10-s + 2.11·11-s − 2.59·12-s − 1.66·13-s + 1.06·14-s − 0.774·15-s + 5/4·16-s − 0.970·17-s + 0.942·18-s + 0.670·20-s − 1.30·21-s + 2.98·22-s + 0.417·23-s − 2.44·24-s + 2/5·25-s − 2.35·26-s + 1.15·27-s + 1.13·28-s + 2.04·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25542916 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25542916 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25542916\)    =    \(2^{2} \cdot 7^{2} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(1628.63\)
Root analytic conductor: \(6.35266\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 25542916,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.859308882\)
\(L(\frac12)\) \(\approx\) \(4.859308882\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
19 \( 1 \)
good3$D_{4}$ \( 1 + p T + 7 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - T - T^{2} - p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 7 T + 3 p T^{2} - 7 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 6 T + 30 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 11 T + 77 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 8 T + 58 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 3 T + 65 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 5 T + 27 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 13 T + 127 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + T + 83 T^{2} + p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 25 T + 261 T^{2} - 25 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 11 T + 137 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 11 T + 91 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 58 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 3 T - 67 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 10 T + 166 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 11 T + 127 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 5 T + 183 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + T + 183 T^{2} + p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.430918513188159061896563010300, −7.990484800497889240384824630941, −7.21433769115620377129407222380, −7.03883930306591710024813396994, −6.74566587582782840978527525201, −6.72305413844112609139115057050, −6.02205332902358180495311574204, −5.88481210995094417572137475359, −5.39751163031909061757464077215, −5.16943988569007445921109112002, −4.79071729405998268668481335376, −4.60081715973733633038865698681, −4.06075393716654564195864050623, −3.79420894479465020591641029311, −3.16217422709710157698057640389, −2.58475834148330168464255290766, −2.21483928580706306924034669323, −1.74505526392658759722624175652, −1.06267392337163156696937956249, −0.57483547744143112307305337657, 0.57483547744143112307305337657, 1.06267392337163156696937956249, 1.74505526392658759722624175652, 2.21483928580706306924034669323, 2.58475834148330168464255290766, 3.16217422709710157698057640389, 3.79420894479465020591641029311, 4.06075393716654564195864050623, 4.60081715973733633038865698681, 4.79071729405998268668481335376, 5.16943988569007445921109112002, 5.39751163031909061757464077215, 5.88481210995094417572137475359, 6.02205332902358180495311574204, 6.72305413844112609139115057050, 6.74566587582782840978527525201, 7.03883930306591710024813396994, 7.21433769115620377129407222380, 7.990484800497889240384824630941, 8.430918513188159061896563010300

Graph of the $Z$-function along the critical line