Properties

Label 8-504e4-1.1-c1e4-0-6
Degree $8$
Conductor $64524128256$
Sign $1$
Analytic cond. $262.319$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·4-s − 8·8-s + 8·11-s − 4·16-s − 32·22-s + 4·25-s + 32·32-s + 24·43-s + 64·44-s − 2·49-s − 16·50-s − 64·64-s + 40·67-s − 96·86-s − 64·88-s + 8·98-s + 32·100-s + 40·107-s − 80·113-s − 4·121-s + 127-s + 64·128-s + 131-s − 160·134-s + 137-s + 139-s + ⋯
L(s)  = 1  − 2.82·2-s + 4·4-s − 2.82·8-s + 2.41·11-s − 16-s − 6.82·22-s + 4/5·25-s + 5.65·32-s + 3.65·43-s + 9.64·44-s − 2/7·49-s − 2.26·50-s − 8·64-s + 4.88·67-s − 10.3·86-s − 6.82·88-s + 0.808·98-s + 16/5·100-s + 3.86·107-s − 7.52·113-s − 0.363·121-s + 0.0887·127-s + 5.65·128-s + 0.0873·131-s − 13.8·134-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(262.319\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6978721546\)
\(L(\frac12)\) \(\approx\) \(0.6978721546\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
3 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 138 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.196398448465406580953985062018, −7.58148818971757696102667669646, −7.53258055365310709124955844104, −7.32379461670124567664132011176, −7.03997022091557205765292905236, −6.76915033850979135925335320528, −6.67591707609765622212713724613, −6.36470307393936787382590872560, −6.20389807758513087279361355351, −5.88154691569736404913858123822, −5.38380406918337699017237087153, −5.30049183317735059237189828760, −4.75337781209501521388492084182, −4.58013551054993211992679579359, −4.26034556935623912322598867249, −3.92564134664087775194198994523, −3.62779921343568044316781763877, −3.59817122738588803860458302893, −2.67980867397175825308727844898, −2.46995466914332457304949869819, −2.30565822536694976416173352303, −1.70383546586965223269484873836, −1.18378488382907941152311842077, −1.11892292735081616892222788900, −0.58384853917214874937567409568, 0.58384853917214874937567409568, 1.11892292735081616892222788900, 1.18378488382907941152311842077, 1.70383546586965223269484873836, 2.30565822536694976416173352303, 2.46995466914332457304949869819, 2.67980867397175825308727844898, 3.59817122738588803860458302893, 3.62779921343568044316781763877, 3.92564134664087775194198994523, 4.26034556935623912322598867249, 4.58013551054993211992679579359, 4.75337781209501521388492084182, 5.30049183317735059237189828760, 5.38380406918337699017237087153, 5.88154691569736404913858123822, 6.20389807758513087279361355351, 6.36470307393936787382590872560, 6.67591707609765622212713724613, 6.76915033850979135925335320528, 7.03997022091557205765292905236, 7.32379461670124567664132011176, 7.53258055365310709124955844104, 7.58148818971757696102667669646, 8.196398448465406580953985062018

Graph of the $Z$-function along the critical line