Properties

Label 2-50-25.17-c2-0-3
Degree $2$
Conductor $50$
Sign $0.248 + 0.968i$
Analytic cond. $1.36240$
Root an. cond. $1.16721$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 1.26i)2-s + (0.382 − 2.41i)3-s + (−1.17 − 1.61i)4-s + (3.59 + 3.47i)5-s + (−2.79 − 2.03i)6-s + (−7.03 − 7.03i)7-s + (−2.79 + 0.442i)8-s + (2.87 + 0.934i)9-s + (6.68 − 2.29i)10-s + (3.40 + 10.4i)11-s + (−4.35 + 2.21i)12-s + (8.34 + 16.3i)13-s + (−13.3 + 4.34i)14-s + (9.77 − 7.33i)15-s + (−1.23 + 3.80i)16-s + (−2.50 − 15.7i)17-s + ⋯
L(s)  = 1  + (0.321 − 0.630i)2-s + (0.127 − 0.804i)3-s + (−0.293 − 0.404i)4-s + (0.718 + 0.695i)5-s + (−0.466 − 0.338i)6-s + (−1.00 − 1.00i)7-s + (−0.349 + 0.0553i)8-s + (0.319 + 0.103i)9-s + (0.668 − 0.229i)10-s + (0.309 + 0.951i)11-s + (−0.363 + 0.184i)12-s + (0.642 + 1.26i)13-s + (−0.955 + 0.310i)14-s + (0.651 − 0.489i)15-s + (−0.0772 + 0.237i)16-s + (−0.147 − 0.928i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $0.248 + 0.968i$
Analytic conductor: \(1.36240\)
Root analytic conductor: \(1.16721\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{50} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :1),\ 0.248 + 0.968i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.08079 - 0.838421i\)
\(L(\frac12)\) \(\approx\) \(1.08079 - 0.838421i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.642 + 1.26i)T \)
5 \( 1 + (-3.59 - 3.47i)T \)
good3 \( 1 + (-0.382 + 2.41i)T + (-8.55 - 2.78i)T^{2} \)
7 \( 1 + (7.03 + 7.03i)T + 49iT^{2} \)
11 \( 1 + (-3.40 - 10.4i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-8.34 - 16.3i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (2.50 + 15.7i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (11.0 - 15.2i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (2.76 + 1.41i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (26.7 + 36.8i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (14.6 + 10.6i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (20.1 - 10.2i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (6.91 - 21.2i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (-28.9 + 28.9i)T - 1.84e3iT^{2} \)
47 \( 1 + (49.6 + 7.86i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-3.99 + 25.2i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (-61.5 - 20.0i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-6.86 - 21.1i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-13.1 - 82.8i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (-37.0 + 26.8i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (90.4 + 46.0i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (-8.49 - 11.6i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (1.47 - 0.233i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-148. + 48.3i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-163. - 25.9i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61145731087350583904172705936, −13.58064240016447608687499202152, −13.10233859392262731624126456852, −11.72585092335869343242460005960, −10.29463675046556378637170282705, −9.499640679695146643163201843406, −7.20359818799376567400888764035, −6.40584952979843664456786195580, −3.99733903674374401505735990554, −1.95638220449819752319836750040, 3.48487303843639099610408778590, 5.34168503790708388766700406984, 6.31175416662725605688051840870, 8.608997412382059001694777914697, 9.274561187888797230296294636733, 10.63937202649030678696523845934, 12.67388078986573606818755329274, 13.12223522841762893625748549787, 14.69807591766536455470087769289, 15.74022393914797219376614687602

Graph of the $Z$-function along the critical line