Properties

Label 2-50-25.3-c2-0-4
Degree $2$
Conductor $50$
Sign $-0.798 + 0.601i$
Analytic cond. $1.36240$
Root an. cond. $1.16721$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 − 1.26i)2-s + (−0.711 − 4.49i)3-s + (−1.17 + 1.61i)4-s + (−4.53 + 2.09i)5-s + (−5.20 + 3.78i)6-s + (3.58 − 3.58i)7-s + (2.79 + 0.442i)8-s + (−11.1 + 3.61i)9-s + (5.55 + 4.37i)10-s + (3.53 − 10.8i)11-s + (8.10 + 4.13i)12-s + (10.0 − 19.7i)13-s + (−6.82 − 2.21i)14-s + (12.6 + 18.9i)15-s + (−1.23 − 3.80i)16-s + (−3.10 + 19.6i)17-s + ⋯
L(s)  = 1  + (−0.321 − 0.630i)2-s + (−0.237 − 1.49i)3-s + (−0.293 + 0.404i)4-s + (−0.907 + 0.419i)5-s + (−0.867 + 0.630i)6-s + (0.512 − 0.512i)7-s + (0.349 + 0.0553i)8-s + (−1.23 + 0.401i)9-s + (0.555 + 0.437i)10-s + (0.321 − 0.989i)11-s + (0.675 + 0.344i)12-s + (0.773 − 1.51i)13-s + (−0.487 − 0.158i)14-s + (0.843 + 1.26i)15-s + (−0.0772 − 0.237i)16-s + (−0.182 + 1.15i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.798 + 0.601i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.798 + 0.601i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $-0.798 + 0.601i$
Analytic conductor: \(1.36240\)
Root analytic conductor: \(1.16721\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{50} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :1),\ -0.798 + 0.601i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.249445 - 0.745475i\)
\(L(\frac12)\) \(\approx\) \(0.249445 - 0.745475i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.642 + 1.26i)T \)
5 \( 1 + (4.53 - 2.09i)T \)
good3 \( 1 + (0.711 + 4.49i)T + (-8.55 + 2.78i)T^{2} \)
7 \( 1 + (-3.58 + 3.58i)T - 49iT^{2} \)
11 \( 1 + (-3.53 + 10.8i)T + (-97.8 - 71.1i)T^{2} \)
13 \( 1 + (-10.0 + 19.7i)T + (-99.3 - 136. i)T^{2} \)
17 \( 1 + (3.10 - 19.6i)T + (-274. - 89.3i)T^{2} \)
19 \( 1 + (-15.8 - 21.8i)T + (-111. + 343. i)T^{2} \)
23 \( 1 + (0.476 - 0.242i)T + (310. - 427. i)T^{2} \)
29 \( 1 + (3.67 - 5.05i)T + (-259. - 799. i)T^{2} \)
31 \( 1 + (-5.42 + 3.94i)T + (296. - 913. i)T^{2} \)
37 \( 1 + (5.24 + 2.67i)T + (804. + 1.10e3i)T^{2} \)
41 \( 1 + (-7.33 - 22.5i)T + (-1.35e3 + 988. i)T^{2} \)
43 \( 1 + (-44.7 - 44.7i)T + 1.84e3iT^{2} \)
47 \( 1 + (27.2 - 4.31i)T + (2.10e3 - 682. i)T^{2} \)
53 \( 1 + (13.6 + 86.0i)T + (-2.67e3 + 868. i)T^{2} \)
59 \( 1 + (-20.7 + 6.73i)T + (2.81e3 - 2.04e3i)T^{2} \)
61 \( 1 + (21.3 - 65.6i)T + (-3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + (-14.4 + 91.1i)T + (-4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (-12.7 - 9.24i)T + (1.55e3 + 4.79e3i)T^{2} \)
73 \( 1 + (60.4 - 30.7i)T + (3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (-71.8 + 98.9i)T + (-1.92e3 - 5.93e3i)T^{2} \)
83 \( 1 + (-60.8 - 9.64i)T + (6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (-75.7 - 24.6i)T + (6.40e3 + 4.65e3i)T^{2} \)
97 \( 1 + (134. - 21.2i)T + (8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.57518799382311608172325798992, −13.39678402011865640045259922541, −12.47035643847004205004082917941, −11.41223532445130241149038277525, −10.61683867488715054925939286167, −8.209341600039143547229632478284, −7.77365905387927536185134460235, −6.12488182381568994408454842890, −3.47205549079042952999339578717, −1.04903744021631734678930036286, 4.22349041380162787760010430807, 5.08127952181633903395797701009, 7.13762036709866316128835957010, 8.879717833372188668545171996688, 9.441120102865773994544837373426, 11.10723217902819438108494902782, 11.88438266894182917649077006446, 13.97671221097126509070425985606, 15.18050109405053610888131464059, 15.78401540218891785948093649334

Graph of the $Z$-function along the critical line