# Properties

 Degree $2$ Conductor $5$ Sign $-0.484 - 0.874i$ Motivic weight $32$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (8.45e4 − 8.45e4i)2-s + (5.85e6 + 5.85e6i)3-s − 9.99e9i·4-s + (−1.33e11 − 7.46e10i)5-s + 9.89e11·6-s + (−4.06e12 + 4.06e12i)7-s + (−4.82e14 − 4.82e14i)8-s − 1.78e15i·9-s + (−1.75e16 + 4.93e15i)10-s − 1.93e16·11-s + (5.85e16 − 5.85e16i)12-s + (6.35e17 + 6.35e17i)13-s + 6.86e17i·14-s + (−3.41e17 − 1.21e18i)15-s − 3.86e19·16-s + (−4.90e19 + 4.90e19i)17-s + ⋯
 L(s)  = 1 + (1.29 − 1.29i)2-s + (0.135 + 0.135i)3-s − 2.32i·4-s + (−0.872 − 0.489i)5-s + 0.350·6-s + (−0.122 + 0.122i)7-s + (−1.71 − 1.71i)8-s − 0.963i·9-s + (−1.75 + 0.493i)10-s − 0.421·11-s + (0.316 − 0.316i)12-s + (0.954 + 0.954i)13-s + 0.315i·14-s + (−0.0520 − 0.185i)15-s − 2.09·16-s + (−1.00 + 1.00i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(33-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+16) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$5$$ Sign: $-0.484 - 0.874i$ Motivic weight: $$32$$ Character: $\chi_{5} (3, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 5,\ (\ :16),\ -0.484 - 0.874i)$$

## Particular Values

 $$L(\frac{33}{2})$$ $$\approx$$ $$1.883990593$$ $$L(\frac12)$$ $$\approx$$ $$1.883990593$$ $$L(17)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad5 $$1 + (1.33e11 + 7.46e10i)T$$
good2 $$1 + (-8.45e4 + 8.45e4i)T - 4.29e9iT^{2}$$
3 $$1 + (-5.85e6 - 5.85e6i)T + 1.85e15iT^{2}$$
7 $$1 + (4.06e12 - 4.06e12i)T - 1.10e27iT^{2}$$
11 $$1 + 1.93e16T + 2.11e33T^{2}$$
13 $$1 + (-6.35e17 - 6.35e17i)T + 4.42e35iT^{2}$$
17 $$1 + (4.90e19 - 4.90e19i)T - 2.36e39iT^{2}$$
19 $$1 + 5.30e17iT - 8.31e40T^{2}$$
23 $$1 + (7.61e21 + 7.61e21i)T + 3.76e43iT^{2}$$
29 $$1 - 1.82e21iT - 6.26e46T^{2}$$
31 $$1 + 1.01e24T + 5.29e47T^{2}$$
37 $$1 + (-3.94e24 + 3.94e24i)T - 1.52e50iT^{2}$$
41 $$1 - 7.58e25T + 4.06e51T^{2}$$
43 $$1 + (1.10e26 + 1.10e26i)T + 1.86e52iT^{2}$$
47 $$1 + (-6.32e26 + 6.32e26i)T - 3.21e53iT^{2}$$
53 $$1 + (3.02e27 + 3.02e27i)T + 1.50e55iT^{2}$$
59 $$1 + 1.06e28iT - 4.64e56T^{2}$$
61 $$1 + 3.36e27T + 1.35e57T^{2}$$
67 $$1 + (-5.01e28 + 5.01e28i)T - 2.71e58iT^{2}$$
71 $$1 - 6.84e28T + 1.73e59T^{2}$$
73 $$1 + (8.59e29 + 8.59e29i)T + 4.22e59iT^{2}$$
79 $$1 + 3.56e30iT - 5.29e60T^{2}$$
83 $$1 + (1.63e30 + 1.63e30i)T + 2.57e61iT^{2}$$
89 $$1 + 7.81e30iT - 2.40e62T^{2}$$
97 $$1 + (3.43e31 - 3.43e31i)T - 3.77e63iT^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−14.59240117154027347007583315965, −13.00903930830784835234146771663, −12.00121494772120969440008696666, −10.79082069112052078179818942469, −8.926067219492064362343135459591, −6.17013142959846120277425629489, −4.34369203476592631585525830025, −3.63016931846890691512818374135, −1.90544090578039956125143896805, −0.34867497899820192131221733005, 2.90065116674033460761738151293, 4.19890002210710292321622820898, 5.65514658432825439339975024310, 7.24764831656578869566534331818, 8.107357391849486713730757368944, 11.20362267737574428716131629085, 12.97264648978423556354132845505, 13.99670245909888383168010671415, 15.51965725186397920074340177694, 16.15526269887831861059438097302