Properties

Label 10-5e5-1.1-c25e5-0-0
Degree $10$
Conductor $3125$
Sign $1$
Analytic cond. $3.04304\times 10^{6}$
Root an. cond. $4.44970$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.60e3·2-s + 6.26e5·3-s − 2.77e7·4-s + 1.22e9·5-s − 2.88e9·6-s + 5.54e10·7-s + 1.03e11·8-s − 1.78e12·9-s − 5.61e12·10-s − 4.14e12·11-s − 1.73e13·12-s + 1.11e14·13-s − 2.55e14·14-s + 7.64e14·15-s + 6.08e14·16-s + 3.17e15·17-s + 8.20e15·18-s + 1.34e16·19-s − 3.39e16·20-s + 3.47e16·21-s + 1.90e16·22-s + 4.09e17·23-s + 6.46e16·24-s + 8.94e17·25-s − 5.11e17·26-s − 8.06e17·27-s − 1.54e18·28-s + ⋯
L(s)  = 1  − 0.794·2-s + 0.680·3-s − 0.827·4-s + 2.23·5-s − 0.540·6-s + 1.51·7-s + 0.531·8-s − 2.10·9-s − 1.77·10-s − 0.398·11-s − 0.563·12-s + 1.32·13-s − 1.20·14-s + 1.52·15-s + 0.540·16-s + 1.32·17-s + 1.67·18-s + 1.39·19-s − 1.85·20-s + 1.03·21-s + 0.316·22-s + 3.89·23-s + 0.361·24-s + 3·25-s − 1.05·26-s − 1.03·27-s − 1.25·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3125 ^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3125 ^{s/2} \, \Gamma_{\C}(s+25/2)^{5} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(3125\)    =    \(5^{5}\)
Sign: $1$
Analytic conductor: \(3.04304\times 10^{6}\)
Root analytic conductor: \(4.44970\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 3125,\ (\ :25/2, 25/2, 25/2, 25/2, 25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(12.38786596\)
\(L(\frac12)\) \(\approx\) \(12.38786596\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 - p^{12} T )^{5} \)
good2$C_2 \wr S_5$ \( 1 + 2301 p T + 6118769 p^{3} T^{2} + 1951668605 p^{7} T^{3} + 87016835407 p^{14} T^{4} + 2360447384899 p^{22} T^{5} + 87016835407 p^{39} T^{6} + 1951668605 p^{57} T^{7} + 6118769 p^{78} T^{8} + 2301 p^{101} T^{9} + p^{125} T^{10} \)
3$C_2 \wr S_5$ \( 1 - 626204 T + 725096275061 p T^{2} - 6883891677244720 p^{5} T^{3} + \)\(12\!\cdots\!14\)\( p^{7} T^{4} - \)\(11\!\cdots\!04\)\( p^{13} T^{5} + \)\(12\!\cdots\!14\)\( p^{32} T^{6} - 6883891677244720 p^{55} T^{7} + 725096275061 p^{76} T^{8} - 626204 p^{100} T^{9} + p^{125} T^{10} \)
7$C_2 \wr S_5$ \( 1 - 55481235808 T + \)\(34\!\cdots\!07\)\( T^{2} - \)\(21\!\cdots\!00\)\( p T^{3} + \)\(18\!\cdots\!86\)\( p^{3} T^{4} - \)\(22\!\cdots\!16\)\( p^{6} T^{5} + \)\(18\!\cdots\!86\)\( p^{28} T^{6} - \)\(21\!\cdots\!00\)\( p^{51} T^{7} + \)\(34\!\cdots\!07\)\( p^{75} T^{8} - 55481235808 p^{100} T^{9} + p^{125} T^{10} \)
11$C_2 \wr S_5$ \( 1 + 4144958451540 T + \)\(26\!\cdots\!45\)\( p T^{2} + \)\(87\!\cdots\!80\)\( p^{3} T^{3} + \)\(25\!\cdots\!10\)\( p^{5} T^{4} + \)\(83\!\cdots\!88\)\( p^{7} T^{5} + \)\(25\!\cdots\!10\)\( p^{30} T^{6} + \)\(87\!\cdots\!80\)\( p^{53} T^{7} + \)\(26\!\cdots\!45\)\( p^{76} T^{8} + 4144958451540 p^{100} T^{9} + p^{125} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 111211249076614 T + \)\(94\!\cdots\!73\)\( T^{2} + \)\(18\!\cdots\!60\)\( p T^{3} - \)\(26\!\cdots\!46\)\( p^{3} T^{4} + \)\(39\!\cdots\!24\)\( p^{3} T^{5} - \)\(26\!\cdots\!46\)\( p^{28} T^{6} + \)\(18\!\cdots\!60\)\( p^{51} T^{7} + \)\(94\!\cdots\!73\)\( p^{75} T^{8} - 111211249076614 p^{100} T^{9} + p^{125} T^{10} \)
17$C_2 \wr S_5$ \( 1 - 3179191896192378 T + \)\(15\!\cdots\!01\)\( p T^{2} - \)\(25\!\cdots\!20\)\( p^{2} T^{3} + \)\(58\!\cdots\!86\)\( p^{3} T^{4} - \)\(75\!\cdots\!64\)\( p^{4} T^{5} + \)\(58\!\cdots\!86\)\( p^{28} T^{6} - \)\(25\!\cdots\!20\)\( p^{52} T^{7} + \)\(15\!\cdots\!01\)\( p^{76} T^{8} - 3179191896192378 p^{100} T^{9} + p^{125} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 13473188050195300 T + \)\(18\!\cdots\!05\)\( p T^{2} - \)\(81\!\cdots\!00\)\( p^{2} T^{3} + \)\(73\!\cdots\!90\)\( p^{3} T^{4} - \)\(24\!\cdots\!00\)\( p^{4} T^{5} + \)\(73\!\cdots\!90\)\( p^{28} T^{6} - \)\(81\!\cdots\!00\)\( p^{52} T^{7} + \)\(18\!\cdots\!05\)\( p^{76} T^{8} - 13473188050195300 p^{100} T^{9} + p^{125} T^{10} \)
23$C_2 \wr S_5$ \( 1 - 409020396998250624 T + \)\(47\!\cdots\!81\)\( p T^{2} - \)\(39\!\cdots\!20\)\( p^{2} T^{3} + \)\(25\!\cdots\!74\)\( p^{3} T^{4} - \)\(12\!\cdots\!72\)\( p^{4} T^{5} + \)\(25\!\cdots\!74\)\( p^{28} T^{6} - \)\(39\!\cdots\!20\)\( p^{52} T^{7} + \)\(47\!\cdots\!81\)\( p^{76} T^{8} - 409020396998250624 p^{100} T^{9} + p^{125} T^{10} \)
29$C_2 \wr S_5$ \( 1 - 1510518246057732150 T + \)\(61\!\cdots\!45\)\( T^{2} - \)\(11\!\cdots\!00\)\( T^{3} + \)\(29\!\cdots\!10\)\( T^{4} - \)\(21\!\cdots\!00\)\( T^{5} + \)\(29\!\cdots\!10\)\( p^{25} T^{6} - \)\(11\!\cdots\!00\)\( p^{50} T^{7} + \)\(61\!\cdots\!45\)\( p^{75} T^{8} - 1510518246057732150 p^{100} T^{9} + p^{125} T^{10} \)
31$C_2 \wr S_5$ \( 1 + 7800790900476562640 T + \)\(59\!\cdots\!95\)\( T^{2} + \)\(20\!\cdots\!80\)\( T^{3} + \)\(11\!\cdots\!10\)\( T^{4} + \)\(35\!\cdots\!48\)\( T^{5} + \)\(11\!\cdots\!10\)\( p^{25} T^{6} + \)\(20\!\cdots\!80\)\( p^{50} T^{7} + \)\(59\!\cdots\!95\)\( p^{75} T^{8} + 7800790900476562640 p^{100} T^{9} + p^{125} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 45693640863683938082 T + \)\(58\!\cdots\!37\)\( T^{2} + \)\(21\!\cdots\!60\)\( T^{3} + \)\(14\!\cdots\!58\)\( T^{4} + \)\(45\!\cdots\!36\)\( T^{5} + \)\(14\!\cdots\!58\)\( p^{25} T^{6} + \)\(21\!\cdots\!60\)\( p^{50} T^{7} + \)\(58\!\cdots\!37\)\( p^{75} T^{8} + 45693640863683938082 p^{100} T^{9} + p^{125} T^{10} \)
41$C_2 \wr S_5$ \( 1 - \)\(26\!\cdots\!10\)\( T + \)\(97\!\cdots\!45\)\( T^{2} - \)\(18\!\cdots\!20\)\( T^{3} + \)\(97\!\cdots\!10\)\( p T^{4} - \)\(55\!\cdots\!52\)\( T^{5} + \)\(97\!\cdots\!10\)\( p^{26} T^{6} - \)\(18\!\cdots\!20\)\( p^{50} T^{7} + \)\(97\!\cdots\!45\)\( p^{75} T^{8} - \)\(26\!\cdots\!10\)\( p^{100} T^{9} + p^{125} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 54212732396046197756 T + \)\(11\!\cdots\!43\)\( T^{2} + \)\(10\!\cdots\!00\)\( T^{3} + \)\(10\!\cdots\!98\)\( T^{4} + \)\(29\!\cdots\!88\)\( T^{5} + \)\(10\!\cdots\!98\)\( p^{25} T^{6} + \)\(10\!\cdots\!00\)\( p^{50} T^{7} + \)\(11\!\cdots\!43\)\( p^{75} T^{8} + 54212732396046197756 p^{100} T^{9} + p^{125} T^{10} \)
47$C_2 \wr S_5$ \( 1 - \)\(13\!\cdots\!88\)\( T + \)\(22\!\cdots\!47\)\( T^{2} - \)\(18\!\cdots\!20\)\( T^{3} + \)\(19\!\cdots\!78\)\( T^{4} - \)\(12\!\cdots\!24\)\( T^{5} + \)\(19\!\cdots\!78\)\( p^{25} T^{6} - \)\(18\!\cdots\!20\)\( p^{50} T^{7} + \)\(22\!\cdots\!47\)\( p^{75} T^{8} - \)\(13\!\cdots\!88\)\( p^{100} T^{9} + p^{125} T^{10} \)
53$C_2 \wr S_5$ \( 1 + \)\(17\!\cdots\!46\)\( T + \)\(47\!\cdots\!33\)\( T^{2} + \)\(39\!\cdots\!40\)\( T^{3} + \)\(97\!\cdots\!18\)\( T^{4} + \)\(46\!\cdots\!08\)\( T^{5} + \)\(97\!\cdots\!18\)\( p^{25} T^{6} + \)\(39\!\cdots\!40\)\( p^{50} T^{7} + \)\(47\!\cdots\!33\)\( p^{75} T^{8} + \)\(17\!\cdots\!46\)\( p^{100} T^{9} + p^{125} T^{10} \)
59$C_2 \wr S_5$ \( 1 + \)\(16\!\cdots\!00\)\( T + \)\(80\!\cdots\!95\)\( T^{2} + \)\(11\!\cdots\!00\)\( T^{3} + \)\(28\!\cdots\!10\)\( T^{4} + \)\(30\!\cdots\!00\)\( T^{5} + \)\(28\!\cdots\!10\)\( p^{25} T^{6} + \)\(11\!\cdots\!00\)\( p^{50} T^{7} + \)\(80\!\cdots\!95\)\( p^{75} T^{8} + \)\(16\!\cdots\!00\)\( p^{100} T^{9} + p^{125} T^{10} \)
61$C_2 \wr S_5$ \( 1 - \)\(11\!\cdots\!10\)\( T + \)\(12\!\cdots\!45\)\( T^{2} - \)\(19\!\cdots\!20\)\( T^{3} + \)\(79\!\cdots\!10\)\( T^{4} - \)\(12\!\cdots\!52\)\( T^{5} + \)\(79\!\cdots\!10\)\( p^{25} T^{6} - \)\(19\!\cdots\!20\)\( p^{50} T^{7} + \)\(12\!\cdots\!45\)\( p^{75} T^{8} - \)\(11\!\cdots\!10\)\( p^{100} T^{9} + p^{125} T^{10} \)
67$C_2 \wr S_5$ \( 1 - \)\(18\!\cdots\!28\)\( T + \)\(33\!\cdots\!67\)\( T^{2} - \)\(36\!\cdots\!80\)\( T^{3} + \)\(35\!\cdots\!18\)\( T^{4} - \)\(25\!\cdots\!44\)\( T^{5} + \)\(35\!\cdots\!18\)\( p^{25} T^{6} - \)\(36\!\cdots\!80\)\( p^{50} T^{7} + \)\(33\!\cdots\!67\)\( p^{75} T^{8} - \)\(18\!\cdots\!28\)\( p^{100} T^{9} + p^{125} T^{10} \)
71$C_2 \wr S_5$ \( 1 - \)\(17\!\cdots\!60\)\( T + \)\(34\!\cdots\!95\)\( T^{2} - \)\(79\!\cdots\!20\)\( T^{3} + \)\(13\!\cdots\!10\)\( T^{4} - \)\(14\!\cdots\!52\)\( T^{5} + \)\(13\!\cdots\!10\)\( p^{25} T^{6} - \)\(79\!\cdots\!20\)\( p^{50} T^{7} + \)\(34\!\cdots\!95\)\( p^{75} T^{8} - \)\(17\!\cdots\!60\)\( p^{100} T^{9} + p^{125} T^{10} \)
73$C_2 \wr S_5$ \( 1 + \)\(47\!\cdots\!26\)\( T + \)\(12\!\cdots\!13\)\( T^{2} + \)\(85\!\cdots\!20\)\( T^{3} - \)\(21\!\cdots\!42\)\( T^{4} - \)\(92\!\cdots\!52\)\( T^{5} - \)\(21\!\cdots\!42\)\( p^{25} T^{6} + \)\(85\!\cdots\!20\)\( p^{50} T^{7} + \)\(12\!\cdots\!13\)\( p^{75} T^{8} + \)\(47\!\cdots\!26\)\( p^{100} T^{9} + p^{125} T^{10} \)
79$C_2 \wr S_5$ \( 1 - \)\(36\!\cdots\!00\)\( T + \)\(57\!\cdots\!95\)\( T^{2} - \)\(29\!\cdots\!00\)\( T^{3} + \)\(25\!\cdots\!10\)\( T^{4} - \)\(85\!\cdots\!00\)\( T^{5} + \)\(25\!\cdots\!10\)\( p^{25} T^{6} - \)\(29\!\cdots\!00\)\( p^{50} T^{7} + \)\(57\!\cdots\!95\)\( p^{75} T^{8} - \)\(36\!\cdots\!00\)\( p^{100} T^{9} + p^{125} T^{10} \)
83$C_2 \wr S_5$ \( 1 - \)\(17\!\cdots\!84\)\( T + \)\(51\!\cdots\!03\)\( T^{2} - \)\(61\!\cdots\!40\)\( T^{3} + \)\(98\!\cdots\!78\)\( T^{4} - \)\(84\!\cdots\!32\)\( T^{5} + \)\(98\!\cdots\!78\)\( p^{25} T^{6} - \)\(61\!\cdots\!40\)\( p^{50} T^{7} + \)\(51\!\cdots\!03\)\( p^{75} T^{8} - \)\(17\!\cdots\!84\)\( p^{100} T^{9} + p^{125} T^{10} \)
89$C_2 \wr S_5$ \( 1 - \)\(40\!\cdots\!50\)\( T + \)\(29\!\cdots\!45\)\( T^{2} - \)\(84\!\cdots\!00\)\( T^{3} + \)\(33\!\cdots\!10\)\( T^{4} - \)\(67\!\cdots\!00\)\( T^{5} + \)\(33\!\cdots\!10\)\( p^{25} T^{6} - \)\(84\!\cdots\!00\)\( p^{50} T^{7} + \)\(29\!\cdots\!45\)\( p^{75} T^{8} - \)\(40\!\cdots\!50\)\( p^{100} T^{9} + p^{125} T^{10} \)
97$C_2 \wr S_5$ \( 1 - \)\(28\!\cdots\!38\)\( T + \)\(55\!\cdots\!97\)\( T^{2} - \)\(70\!\cdots\!20\)\( T^{3} + \)\(72\!\cdots\!74\)\( p T^{4} - \)\(53\!\cdots\!24\)\( T^{5} + \)\(72\!\cdots\!74\)\( p^{26} T^{6} - \)\(70\!\cdots\!20\)\( p^{50} T^{7} + \)\(55\!\cdots\!97\)\( p^{75} T^{8} - \)\(28\!\cdots\!38\)\( p^{100} T^{9} + p^{125} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.288728041351937319921401539802, −9.229984475166647966721695584263, −8.883424148080948577689516878726, −8.866936560335141556580083034590, −8.723651424866256893417462415358, −7.939173443063166648433283979932, −7.73513078893411390803915267939, −7.40778191513194685788050802986, −6.61842423525362991846485652995, −6.31674493816719350806421433900, −5.74144604720029268386873975577, −5.38279469884390421935133152966, −5.37082563808613739320078952296, −4.88857269544941328827608428084, −4.81278731441809064266023663048, −3.58761407238452785473078968339, −3.37300503519884592595418562183, −3.01783120735494206474524156937, −2.81609392034214628815760544294, −2.11029199980314421473377432673, −1.94964119840963392273652671465, −1.35370335598729196682876711717, −0.897236454280593245552162028863, −0.805196777266114034413544588637, −0.56895011045131009159885814557, 0.56895011045131009159885814557, 0.805196777266114034413544588637, 0.897236454280593245552162028863, 1.35370335598729196682876711717, 1.94964119840963392273652671465, 2.11029199980314421473377432673, 2.81609392034214628815760544294, 3.01783120735494206474524156937, 3.37300503519884592595418562183, 3.58761407238452785473078968339, 4.81278731441809064266023663048, 4.88857269544941328827608428084, 5.37082563808613739320078952296, 5.38279469884390421935133152966, 5.74144604720029268386873975577, 6.31674493816719350806421433900, 6.61842423525362991846485652995, 7.40778191513194685788050802986, 7.73513078893411390803915267939, 7.939173443063166648433283979932, 8.723651424866256893417462415358, 8.866936560335141556580083034590, 8.883424148080948577689516878726, 9.229984475166647966721695584263, 9.288728041351937319921401539802

Graph of the $Z$-function along the critical line