Properties

Label 20-5e10-1.1-c23e10-0-0
Degree $20$
Conductor $9765625$
Sign $1$
Analytic cond. $1.74901\times 10^{12}$
Root an. cond. $4.09392$
Motivic weight $23$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.13e7·4-s + 1.24e8·5-s + 3.76e11·9-s − 1.44e12·11-s + 2.17e14·16-s + 8.87e14·19-s + 2.65e15·20-s + 6.43e13·25-s + 6.85e16·29-s − 3.03e17·31-s + 8.01e18·36-s − 6.65e18·41-s − 3.08e19·44-s + 4.69e19·45-s + 1.62e20·49-s − 1.80e20·55-s + 4.61e20·59-s + 2.02e20·61-s + 1.40e21·64-s − 6.36e21·71-s + 1.89e22·76-s + 8.00e21·79-s + 2.71e22·80-s + 5.03e22·81-s + 1.70e22·89-s + 1.10e23·95-s − 5.44e23·99-s + ⋯
L(s)  = 1  + 2.53·4-s + 1.14·5-s + 3.99·9-s − 1.53·11-s + 3.08·16-s + 1.74·19-s + 2.90·20-s + 0.00540·25-s + 1.04·29-s − 2.14·31-s + 10.1·36-s − 1.88·41-s − 3.88·44-s + 4.56·45-s + 5.93·49-s − 1.74·55-s + 1.99·59-s + 0.597·61-s + 2.38·64-s − 3.26·71-s + 4.44·76-s + 1.20·79-s + 3.53·80-s + 5.68·81-s + 0.651·89-s + 1.99·95-s − 6.11·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9765625 ^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9765625 ^{s/2} \, \Gamma_{\C}(s+23/2)^{10} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(9765625\)    =    \(5^{10}\)
Sign: $1$
Analytic conductor: \(1.74901\times 10^{12}\)
Root analytic conductor: \(4.09392\)
Motivic weight: \(23\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 9765625,\ (\ :[23/2]^{10}),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(78.97855421\)
\(L(\frac12)\) \(\approx\) \(78.97855421\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 998094 p^{3} T + 39682820137 p^{8} T^{2} - 228392344632936 p^{14} T^{3} + 54158040296710392 p^{21} T^{4} + 4075302709224414208 p^{30} T^{5} + 54158040296710392 p^{44} T^{6} - 228392344632936 p^{60} T^{7} + 39682820137 p^{77} T^{8} - 998094 p^{95} T^{9} + p^{115} T^{10} \)
good2 \( 1 - 5326675 p^{2} T^{2} + 462011453385 p^{9} T^{4} - 110684372486229675 p^{14} T^{6} + \)\(12\!\cdots\!65\)\( p^{26} T^{8} - \)\(26\!\cdots\!25\)\( p^{40} T^{10} + \)\(12\!\cdots\!65\)\( p^{72} T^{12} - 110684372486229675 p^{106} T^{14} + 462011453385 p^{147} T^{16} - 5326675 p^{186} T^{18} + p^{230} T^{20} \)
3 \( 1 - 41787842050 p^{2} T^{2} + \)\(12\!\cdots\!05\)\( p^{6} T^{4} - \)\(26\!\cdots\!00\)\( p^{10} T^{6} + \)\(53\!\cdots\!90\)\( p^{18} T^{8} - \)\(94\!\cdots\!00\)\( p^{28} T^{10} + \)\(53\!\cdots\!90\)\( p^{64} T^{12} - \)\(26\!\cdots\!00\)\( p^{102} T^{14} + \)\(12\!\cdots\!05\)\( p^{144} T^{16} - 41787842050 p^{186} T^{18} + p^{230} T^{20} \)
7 \( 1 - \)\(16\!\cdots\!50\)\( T^{2} + \)\(26\!\cdots\!05\)\( p^{2} T^{4} - \)\(55\!\cdots\!00\)\( p^{6} T^{6} + \)\(88\!\cdots\!90\)\( p^{10} T^{8} - \)\(11\!\cdots\!00\)\( p^{14} T^{10} + \)\(88\!\cdots\!90\)\( p^{56} T^{12} - \)\(55\!\cdots\!00\)\( p^{98} T^{14} + \)\(26\!\cdots\!05\)\( p^{140} T^{16} - \)\(16\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
11 \( ( 1 + 65847160740 p T + \)\(28\!\cdots\!95\)\( p^{2} T^{2} + \)\(17\!\cdots\!80\)\( p^{3} T^{3} + \)\(36\!\cdots\!10\)\( p^{4} T^{4} + \)\(18\!\cdots\!48\)\( p^{5} T^{5} + \)\(36\!\cdots\!10\)\( p^{27} T^{6} + \)\(17\!\cdots\!80\)\( p^{49} T^{7} + \)\(28\!\cdots\!95\)\( p^{71} T^{8} + 65847160740 p^{93} T^{9} + p^{115} T^{10} )^{2} \)
13 \( 1 - \)\(14\!\cdots\!50\)\( T^{2} + \)\(12\!\cdots\!45\)\( T^{4} - \)\(52\!\cdots\!00\)\( p^{2} T^{6} + \)\(17\!\cdots\!10\)\( p^{4} T^{8} - \)\(45\!\cdots\!00\)\( p^{6} T^{10} + \)\(17\!\cdots\!10\)\( p^{50} T^{12} - \)\(52\!\cdots\!00\)\( p^{94} T^{14} + \)\(12\!\cdots\!45\)\( p^{138} T^{16} - \)\(14\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
17 \( 1 - \)\(14\!\cdots\!50\)\( T^{2} + \)\(34\!\cdots\!05\)\( p^{2} T^{4} - \)\(53\!\cdots\!00\)\( p^{4} T^{6} + \)\(58\!\cdots\!90\)\( p^{6} T^{8} - \)\(47\!\cdots\!00\)\( p^{8} T^{10} + \)\(58\!\cdots\!90\)\( p^{52} T^{12} - \)\(53\!\cdots\!00\)\( p^{96} T^{14} + \)\(34\!\cdots\!05\)\( p^{140} T^{16} - \)\(14\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
19 \( ( 1 - 443813407650700 T + \)\(39\!\cdots\!05\)\( p T^{2} - \)\(13\!\cdots\!00\)\( p^{2} T^{3} + \)\(24\!\cdots\!90\)\( p^{3} T^{4} + \)\(28\!\cdots\!00\)\( p^{4} T^{5} + \)\(24\!\cdots\!90\)\( p^{26} T^{6} - \)\(13\!\cdots\!00\)\( p^{48} T^{7} + \)\(39\!\cdots\!05\)\( p^{70} T^{8} - 443813407650700 p^{92} T^{9} + p^{115} T^{10} )^{2} \)
23 \( 1 - \)\(13\!\cdots\!50\)\( T^{2} + \)\(88\!\cdots\!45\)\( T^{4} - \)\(39\!\cdots\!00\)\( T^{6} + \)\(12\!\cdots\!10\)\( T^{8} - \)\(29\!\cdots\!00\)\( T^{10} + \)\(12\!\cdots\!10\)\( p^{46} T^{12} - \)\(39\!\cdots\!00\)\( p^{92} T^{14} + \)\(88\!\cdots\!45\)\( p^{138} T^{16} - \)\(13\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
29 \( ( 1 - 34269446792664750 T + \)\(10\!\cdots\!45\)\( T^{2} - \)\(19\!\cdots\!00\)\( T^{3} + \)\(55\!\cdots\!10\)\( T^{4} - \)\(60\!\cdots\!00\)\( T^{5} + \)\(55\!\cdots\!10\)\( p^{23} T^{6} - \)\(19\!\cdots\!00\)\( p^{46} T^{7} + \)\(10\!\cdots\!45\)\( p^{69} T^{8} - 34269446792664750 p^{92} T^{9} + p^{115} T^{10} )^{2} \)
31 \( ( 1 + 151851826140921440 T + \)\(66\!\cdots\!95\)\( T^{2} + \)\(81\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!10\)\( T^{4} + \)\(21\!\cdots\!48\)\( T^{5} + \)\(21\!\cdots\!10\)\( p^{23} T^{6} + \)\(81\!\cdots\!80\)\( p^{46} T^{7} + \)\(66\!\cdots\!95\)\( p^{69} T^{8} + 151851826140921440 p^{92} T^{9} + p^{115} T^{10} )^{2} \)
37 \( 1 - \)\(32\!\cdots\!50\)\( T^{2} + \)\(84\!\cdots\!45\)\( T^{4} - \)\(15\!\cdots\!00\)\( T^{6} + \)\(22\!\cdots\!10\)\( T^{8} - \)\(29\!\cdots\!00\)\( T^{10} + \)\(22\!\cdots\!10\)\( p^{46} T^{12} - \)\(15\!\cdots\!00\)\( p^{92} T^{14} + \)\(84\!\cdots\!45\)\( p^{138} T^{16} - \)\(32\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
41 \( ( 1 + 3329416477141763790 T + \)\(28\!\cdots\!45\)\( T^{2} + \)\(10\!\cdots\!80\)\( T^{3} + \)\(54\!\cdots\!10\)\( T^{4} + \)\(12\!\cdots\!48\)\( T^{5} + \)\(54\!\cdots\!10\)\( p^{23} T^{6} + \)\(10\!\cdots\!80\)\( p^{46} T^{7} + \)\(28\!\cdots\!45\)\( p^{69} T^{8} + 3329416477141763790 p^{92} T^{9} + p^{115} T^{10} )^{2} \)
43 \( 1 - \)\(14\!\cdots\!50\)\( T^{2} + \)\(11\!\cdots\!45\)\( T^{4} - \)\(65\!\cdots\!00\)\( T^{6} + \)\(30\!\cdots\!10\)\( T^{8} - \)\(12\!\cdots\!00\)\( T^{10} + \)\(30\!\cdots\!10\)\( p^{46} T^{12} - \)\(65\!\cdots\!00\)\( p^{92} T^{14} + \)\(11\!\cdots\!45\)\( p^{138} T^{16} - \)\(14\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
47 \( 1 - \)\(18\!\cdots\!50\)\( T^{2} + \)\(17\!\cdots\!45\)\( T^{4} - \)\(10\!\cdots\!00\)\( T^{6} + \)\(46\!\cdots\!10\)\( T^{8} - \)\(15\!\cdots\!00\)\( T^{10} + \)\(46\!\cdots\!10\)\( p^{46} T^{12} - \)\(10\!\cdots\!00\)\( p^{92} T^{14} + \)\(17\!\cdots\!45\)\( p^{138} T^{16} - \)\(18\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
53 \( 1 - \)\(12\!\cdots\!50\)\( T^{2} + \)\(12\!\cdots\!45\)\( T^{4} - \)\(91\!\cdots\!00\)\( T^{6} + \)\(55\!\cdots\!10\)\( T^{8} - \)\(27\!\cdots\!00\)\( T^{10} + \)\(55\!\cdots\!10\)\( p^{46} T^{12} - \)\(91\!\cdots\!00\)\( p^{92} T^{14} + \)\(12\!\cdots\!45\)\( p^{138} T^{16} - \)\(12\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
59 \( ( 1 - \)\(23\!\cdots\!00\)\( T + \)\(12\!\cdots\!95\)\( T^{2} - \)\(11\!\cdots\!00\)\( T^{3} + \)\(61\!\cdots\!10\)\( T^{4} - \)\(32\!\cdots\!00\)\( T^{5} + \)\(61\!\cdots\!10\)\( p^{23} T^{6} - \)\(11\!\cdots\!00\)\( p^{46} T^{7} + \)\(12\!\cdots\!95\)\( p^{69} T^{8} - \)\(23\!\cdots\!00\)\( p^{92} T^{9} + p^{115} T^{10} )^{2} \)
61 \( ( 1 - \)\(10\!\cdots\!10\)\( T + \)\(42\!\cdots\!45\)\( T^{2} - \)\(56\!\cdots\!20\)\( T^{3} + \)\(82\!\cdots\!10\)\( T^{4} - \)\(10\!\cdots\!52\)\( T^{5} + \)\(82\!\cdots\!10\)\( p^{23} T^{6} - \)\(56\!\cdots\!20\)\( p^{46} T^{7} + \)\(42\!\cdots\!45\)\( p^{69} T^{8} - \)\(10\!\cdots\!10\)\( p^{92} T^{9} + p^{115} T^{10} )^{2} \)
67 \( 1 - \)\(53\!\cdots\!50\)\( T^{2} + \)\(14\!\cdots\!45\)\( T^{4} - \)\(27\!\cdots\!00\)\( T^{6} + \)\(39\!\cdots\!10\)\( T^{8} - \)\(43\!\cdots\!00\)\( T^{10} + \)\(39\!\cdots\!10\)\( p^{46} T^{12} - \)\(27\!\cdots\!00\)\( p^{92} T^{14} + \)\(14\!\cdots\!45\)\( p^{138} T^{16} - \)\(53\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
71 \( ( 1 + \)\(31\!\cdots\!40\)\( T + \)\(15\!\cdots\!95\)\( T^{2} + \)\(36\!\cdots\!80\)\( T^{3} + \)\(10\!\cdots\!10\)\( T^{4} + \)\(19\!\cdots\!48\)\( T^{5} + \)\(10\!\cdots\!10\)\( p^{23} T^{6} + \)\(36\!\cdots\!80\)\( p^{46} T^{7} + \)\(15\!\cdots\!95\)\( p^{69} T^{8} + \)\(31\!\cdots\!40\)\( p^{92} T^{9} + p^{115} T^{10} )^{2} \)
73 \( 1 - \)\(33\!\cdots\!50\)\( T^{2} + \)\(48\!\cdots\!45\)\( T^{4} - \)\(44\!\cdots\!00\)\( T^{6} + \)\(33\!\cdots\!10\)\( T^{8} - \)\(23\!\cdots\!00\)\( T^{10} + \)\(33\!\cdots\!10\)\( p^{46} T^{12} - \)\(44\!\cdots\!00\)\( p^{92} T^{14} + \)\(48\!\cdots\!45\)\( p^{138} T^{16} - \)\(33\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
79 \( ( 1 - \)\(40\!\cdots\!00\)\( T + \)\(12\!\cdots\!95\)\( T^{2} + \)\(27\!\cdots\!00\)\( T^{3} + \)\(45\!\cdots\!10\)\( T^{4} + \)\(19\!\cdots\!00\)\( T^{5} + \)\(45\!\cdots\!10\)\( p^{23} T^{6} + \)\(27\!\cdots\!00\)\( p^{46} T^{7} + \)\(12\!\cdots\!95\)\( p^{69} T^{8} - \)\(40\!\cdots\!00\)\( p^{92} T^{9} + p^{115} T^{10} )^{2} \)
83 \( 1 - \)\(10\!\cdots\!50\)\( T^{2} + \)\(51\!\cdots\!45\)\( T^{4} - \)\(16\!\cdots\!00\)\( T^{6} + \)\(35\!\cdots\!10\)\( T^{8} - \)\(56\!\cdots\!00\)\( T^{10} + \)\(35\!\cdots\!10\)\( p^{46} T^{12} - \)\(16\!\cdots\!00\)\( p^{92} T^{14} + \)\(51\!\cdots\!45\)\( p^{138} T^{16} - \)\(10\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
89 \( ( 1 - \)\(85\!\cdots\!50\)\( T + \)\(38\!\cdots\!45\)\( T^{2} - \)\(76\!\cdots\!00\)\( T^{3} + \)\(56\!\cdots\!10\)\( T^{4} - \)\(17\!\cdots\!00\)\( T^{5} + \)\(56\!\cdots\!10\)\( p^{23} T^{6} - \)\(76\!\cdots\!00\)\( p^{46} T^{7} + \)\(38\!\cdots\!45\)\( p^{69} T^{8} - \)\(85\!\cdots\!50\)\( p^{92} T^{9} + p^{115} T^{10} )^{2} \)
97 \( 1 - \)\(32\!\cdots\!50\)\( T^{2} + \)\(52\!\cdots\!45\)\( T^{4} - \)\(54\!\cdots\!00\)\( T^{6} + \)\(40\!\cdots\!10\)\( T^{8} - \)\(23\!\cdots\!00\)\( T^{10} + \)\(40\!\cdots\!10\)\( p^{46} T^{12} - \)\(54\!\cdots\!00\)\( p^{92} T^{14} + \)\(52\!\cdots\!45\)\( p^{138} T^{16} - \)\(32\!\cdots\!50\)\( p^{184} T^{18} + p^{230} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.40626756172563702937420344557, −5.25713199583928173903618689496, −5.13943321787771404757541383030, −4.62282566720187704374397931288, −4.54233091445284256328052760637, −4.12270791730826343963419435309, −3.97465694762847944970936948394, −3.85002650887680936637508637972, −3.77075793258668919708552481626, −3.51227847185891786076052509699, −2.81851011341904562378685316293, −2.77796433345066109196548543371, −2.72124442008284013739821915990, −2.57898358975674294886551083000, −2.42379570868491663851548146270, −1.96370265505155018129326838630, −1.80719543815650555416460328598, −1.69588170279366914792423227083, −1.49241645011175374261357116489, −1.34811952702682709471052705777, −1.29211835349699751827341514385, −0.981190280145573526060847934425, −0.55947827765812649645455555179, −0.54918841304476118423356014456, −0.28027467530829087479155787865, 0.28027467530829087479155787865, 0.54918841304476118423356014456, 0.55947827765812649645455555179, 0.981190280145573526060847934425, 1.29211835349699751827341514385, 1.34811952702682709471052705777, 1.49241645011175374261357116489, 1.69588170279366914792423227083, 1.80719543815650555416460328598, 1.96370265505155018129326838630, 2.42379570868491663851548146270, 2.57898358975674294886551083000, 2.72124442008284013739821915990, 2.77796433345066109196548543371, 2.81851011341904562378685316293, 3.51227847185891786076052509699, 3.77075793258668919708552481626, 3.85002650887680936637508637972, 3.97465694762847944970936948394, 4.12270791730826343963419435309, 4.54233091445284256328052760637, 4.62282566720187704374397931288, 5.13943321787771404757541383030, 5.25713199583928173903618689496, 5.40626756172563702937420344557

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.