Properties

Label 8-5e4-1.1-c21e4-0-0
Degree $8$
Conductor $625$
Sign $1$
Analytic cond. $38129.9$
Root an. cond. $3.73816$
Motivic weight $21$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.91e3·2-s + 8.32e4·3-s + 4.62e6·4-s + 3.90e7·5-s + 2.42e8·6-s + 5.12e8·7-s + 4.92e9·8-s − 6.58e9·9-s + 1.13e11·10-s + 3.37e10·11-s + 3.84e11·12-s + 8.63e11·13-s + 1.49e12·14-s + 3.25e12·15-s + 1.28e12·16-s + 1.76e13·17-s − 1.91e13·18-s + 6.52e13·19-s + 1.80e14·20-s + 4.26e13·21-s + 9.81e13·22-s + 3.06e14·23-s + 4.09e14·24-s + 9.53e14·25-s + 2.51e15·26-s − 2.19e15·27-s + 2.36e15·28-s + ⋯
L(s)  = 1  + 2.00·2-s + 0.813·3-s + 2.20·4-s + 1.78·5-s + 1.63·6-s + 0.685·7-s + 1.62·8-s − 0.629·9-s + 3.59·10-s + 0.392·11-s + 1.79·12-s + 1.73·13-s + 1.37·14-s + 1.45·15-s + 0.292·16-s + 2.12·17-s − 1.26·18-s + 2.44·19-s + 3.94·20-s + 0.558·21-s + 0.787·22-s + 1.54·23-s + 1.31·24-s + 2·25-s + 3.49·26-s − 2.04·27-s + 1.51·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+21/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $1$
Analytic conductor: \(38129.9\)
Root analytic conductor: \(3.73816\)
Motivic weight: \(21\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 625,\ (\ :21/2, 21/2, 21/2, 21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(53.40802061\)
\(L(\frac12)\) \(\approx\) \(53.40802061\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 - p^{10} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 1455 p T + 480715 p^{3} T^{2} - 20821915 p^{7} T^{3} + 369259299 p^{13} T^{4} - 20821915 p^{28} T^{5} + 480715 p^{45} T^{6} - 1455 p^{64} T^{7} + p^{84} T^{8} \)
3$C_2 \wr S_4$ \( 1 - 83240 T + 4506236980 p T^{2} + 6378982435480 p^{4} T^{3} - 2439718099011562 p^{8} T^{4} + 6378982435480 p^{25} T^{5} + 4506236980 p^{43} T^{6} - 83240 p^{63} T^{7} + p^{84} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 512613800 T + 153461684091805300 p T^{2} - \)\(15\!\cdots\!00\)\( p^{3} T^{3} + \)\(27\!\cdots\!86\)\( p^{3} T^{4} - \)\(15\!\cdots\!00\)\( p^{24} T^{5} + 153461684091805300 p^{43} T^{6} - 512613800 p^{63} T^{7} + p^{84} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 33727076448 T + \)\(70\!\cdots\!28\)\( p T^{2} + \)\(19\!\cdots\!24\)\( p^{2} T^{3} + \)\(17\!\cdots\!70\)\( p^{3} T^{4} + \)\(19\!\cdots\!24\)\( p^{23} T^{5} + \)\(70\!\cdots\!28\)\( p^{43} T^{6} - 33727076448 p^{63} T^{7} + p^{84} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 66425551160 p T + \)\(67\!\cdots\!60\)\( p T^{2} - \)\(28\!\cdots\!60\)\( p^{2} T^{3} + \)\(13\!\cdots\!54\)\( p^{3} T^{4} - \)\(28\!\cdots\!60\)\( p^{23} T^{5} + \)\(67\!\cdots\!60\)\( p^{43} T^{6} - 66425551160 p^{64} T^{7} + p^{84} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1040864182440 p T + \)\(91\!\cdots\!40\)\( p^{2} T^{2} - \)\(58\!\cdots\!20\)\( p^{3} T^{3} + \)\(34\!\cdots\!18\)\( p^{4} T^{4} - \)\(58\!\cdots\!20\)\( p^{24} T^{5} + \)\(91\!\cdots\!40\)\( p^{44} T^{6} - 1040864182440 p^{64} T^{7} + p^{84} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 3432505097360 p T + \)\(11\!\cdots\!16\)\( p^{2} T^{2} - \)\(20\!\cdots\!20\)\( p^{3} T^{3} + \)\(36\!\cdots\!46\)\( p^{4} T^{4} - \)\(20\!\cdots\!20\)\( p^{24} T^{5} + \)\(11\!\cdots\!16\)\( p^{44} T^{6} - 3432505097360 p^{64} T^{7} + p^{84} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 306130984922520 T + \)\(11\!\cdots\!20\)\( T^{2} - \)\(20\!\cdots\!60\)\( T^{3} + \)\(52\!\cdots\!58\)\( T^{4} - \)\(20\!\cdots\!60\)\( p^{21} T^{5} + \)\(11\!\cdots\!20\)\( p^{42} T^{6} - 306130984922520 p^{63} T^{7} + p^{84} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 1183867881941640 T + \)\(13\!\cdots\!16\)\( T^{2} + \)\(13\!\cdots\!80\)\( T^{3} + \)\(94\!\cdots\!46\)\( T^{4} + \)\(13\!\cdots\!80\)\( p^{21} T^{5} + \)\(13\!\cdots\!16\)\( p^{42} T^{6} + 1183867881941640 p^{63} T^{7} + p^{84} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 8127647981305328 T + \)\(72\!\cdots\!68\)\( T^{2} - \)\(30\!\cdots\!76\)\( T^{3} + \)\(17\!\cdots\!70\)\( T^{4} - \)\(30\!\cdots\!76\)\( p^{21} T^{5} + \)\(72\!\cdots\!68\)\( p^{42} T^{6} - 8127647981305328 p^{63} T^{7} + p^{84} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 50729262881561240 T + \)\(22\!\cdots\!80\)\( T^{2} - \)\(90\!\cdots\!80\)\( T^{3} + \)\(30\!\cdots\!38\)\( T^{4} - \)\(90\!\cdots\!80\)\( p^{21} T^{5} + \)\(22\!\cdots\!80\)\( p^{42} T^{6} - 50729262881561240 p^{63} T^{7} + p^{84} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 151242912792059832 T + \)\(21\!\cdots\!48\)\( T^{2} + \)\(23\!\cdots\!84\)\( T^{3} + \)\(25\!\cdots\!70\)\( T^{4} + \)\(23\!\cdots\!84\)\( p^{21} T^{5} + \)\(21\!\cdots\!48\)\( p^{42} T^{6} + 151242912792059832 p^{63} T^{7} + p^{84} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 195241056541629800 T + \)\(55\!\cdots\!00\)\( T^{2} - \)\(87\!\cdots\!00\)\( T^{3} + \)\(13\!\cdots\!98\)\( T^{4} - \)\(87\!\cdots\!00\)\( p^{21} T^{5} + \)\(55\!\cdots\!00\)\( p^{42} T^{6} - 195241056541629800 p^{63} T^{7} + p^{84} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 461921266212226680 T + \)\(47\!\cdots\!40\)\( T^{2} + \)\(18\!\cdots\!60\)\( T^{3} + \)\(90\!\cdots\!18\)\( T^{4} + \)\(18\!\cdots\!60\)\( p^{21} T^{5} + \)\(47\!\cdots\!40\)\( p^{42} T^{6} + 461921266212226680 p^{63} T^{7} + p^{84} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 1013253578565011640 T + \)\(60\!\cdots\!40\)\( T^{2} - \)\(49\!\cdots\!20\)\( T^{3} + \)\(14\!\cdots\!18\)\( T^{4} - \)\(49\!\cdots\!20\)\( p^{21} T^{5} + \)\(60\!\cdots\!40\)\( p^{42} T^{6} - 1013253578565011640 p^{63} T^{7} + p^{84} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 9994246603380823920 T + \)\(70\!\cdots\!36\)\( T^{2} - \)\(36\!\cdots\!40\)\( T^{3} + \)\(15\!\cdots\!86\)\( T^{4} - \)\(36\!\cdots\!40\)\( p^{21} T^{5} + \)\(70\!\cdots\!36\)\( p^{42} T^{6} - 9994246603380823920 p^{63} T^{7} + p^{84} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 10817434481929098952 T + \)\(10\!\cdots\!08\)\( T^{2} + \)\(81\!\cdots\!04\)\( T^{3} + \)\(49\!\cdots\!70\)\( T^{4} + \)\(81\!\cdots\!04\)\( p^{21} T^{5} + \)\(10\!\cdots\!08\)\( p^{42} T^{6} + 10817434481929098952 p^{63} T^{7} + p^{84} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 21966891437417653880 T + \)\(91\!\cdots\!60\)\( T^{2} - \)\(14\!\cdots\!60\)\( T^{3} + \)\(31\!\cdots\!78\)\( T^{4} - \)\(14\!\cdots\!60\)\( p^{21} T^{5} + \)\(91\!\cdots\!60\)\( p^{42} T^{6} - 21966891437417653880 p^{63} T^{7} + p^{84} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 51295204524235287888 T + \)\(31\!\cdots\!88\)\( T^{2} - \)\(91\!\cdots\!36\)\( T^{3} + \)\(33\!\cdots\!70\)\( T^{4} - \)\(91\!\cdots\!36\)\( p^{21} T^{5} + \)\(31\!\cdots\!88\)\( p^{42} T^{6} - 51295204524235287888 p^{63} T^{7} + p^{84} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 74737166154487034120 T + \)\(61\!\cdots\!20\)\( T^{2} - \)\(27\!\cdots\!60\)\( T^{3} + \)\(12\!\cdots\!58\)\( T^{4} - \)\(27\!\cdots\!60\)\( p^{21} T^{5} + \)\(61\!\cdots\!20\)\( p^{42} T^{6} - 74737166154487034120 p^{63} T^{7} + p^{84} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 60935090437726582240 T + \)\(11\!\cdots\!16\)\( T^{2} + \)\(77\!\cdots\!80\)\( T^{3} + \)\(13\!\cdots\!46\)\( T^{4} + \)\(77\!\cdots\!80\)\( p^{21} T^{5} + \)\(11\!\cdots\!16\)\( p^{42} T^{6} + 60935090437726582240 p^{63} T^{7} + p^{84} T^{8} \)
83$C_2 \wr S_4$ \( 1 + \)\(27\!\cdots\!40\)\( T + \)\(87\!\cdots\!60\)\( T^{2} + \)\(14\!\cdots\!20\)\( T^{3} + \)\(27\!\cdots\!78\)\( T^{4} + \)\(14\!\cdots\!20\)\( p^{21} T^{5} + \)\(87\!\cdots\!60\)\( p^{42} T^{6} + \)\(27\!\cdots\!40\)\( p^{63} T^{7} + p^{84} T^{8} \)
89$C_2 \wr S_4$ \( 1 + \)\(32\!\cdots\!20\)\( T + \)\(23\!\cdots\!56\)\( T^{2} + \)\(33\!\cdots\!40\)\( T^{3} + \)\(21\!\cdots\!26\)\( T^{4} + \)\(33\!\cdots\!40\)\( p^{21} T^{5} + \)\(23\!\cdots\!56\)\( p^{42} T^{6} + \)\(32\!\cdots\!20\)\( p^{63} T^{7} + p^{84} T^{8} \)
97$C_2 \wr S_4$ \( 1 - \)\(30\!\cdots\!20\)\( T + \)\(61\!\cdots\!40\)\( T^{2} - \)\(58\!\cdots\!40\)\( T^{3} + \)\(40\!\cdots\!18\)\( T^{4} - \)\(58\!\cdots\!40\)\( p^{21} T^{5} + \)\(61\!\cdots\!40\)\( p^{42} T^{6} - \)\(30\!\cdots\!20\)\( p^{63} T^{7} + p^{84} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27975010077361349831866451618, −12.65352449842500958510998639736, −11.86518593527625363574269808828, −11.76640738560790848346736173380, −11.01990662589309415313501850955, −11.00430035000056245379626896660, −9.852444896016142572638592919417, −9.485039857849805393942143528134, −9.471507612001995553743950202520, −8.388553339304546418356830675414, −8.189607042302804712651526080125, −7.51755326892828562056249831199, −6.62777943694871612797710607893, −6.42189344282629746367641287488, −5.47162626704009787185637419259, −5.45551714286228261970517123240, −5.34035932747166179991494770308, −4.37110406059634788583049541252, −3.64241485687401878837758512525, −3.29511793587862789182289902295, −2.82049632807706720445878209404, −2.51296214007805080298970913458, −1.48194548565018517145921995530, −1.32884026326969986671623799461, −0.894784747208873150369404162907, 0.894784747208873150369404162907, 1.32884026326969986671623799461, 1.48194548565018517145921995530, 2.51296214007805080298970913458, 2.82049632807706720445878209404, 3.29511793587862789182289902295, 3.64241485687401878837758512525, 4.37110406059634788583049541252, 5.34035932747166179991494770308, 5.45551714286228261970517123240, 5.47162626704009787185637419259, 6.42189344282629746367641287488, 6.62777943694871612797710607893, 7.51755326892828562056249831199, 8.189607042302804712651526080125, 8.388553339304546418356830675414, 9.471507612001995553743950202520, 9.485039857849805393942143528134, 9.852444896016142572638592919417, 11.00430035000056245379626896660, 11.01990662589309415313501850955, 11.76640738560790848346736173380, 11.86518593527625363574269808828, 12.65352449842500958510998639736, 13.27975010077361349831866451618

Graph of the $Z$-function along the critical line