L(s) = 1 | − 660. i·2-s − 1.13e4i·3-s − 3.05e5·4-s
+ (−2.11e4 + 8.73e5i)5-s − 7.47e6·6-s − 2.37e7i·7-s
+ 1.15e8i·8-s + 1.24e6·9-s + (5.76e8 + 1.39e7i)10-s
− 3.40e8·11-s + 3.45e9i·12-s + 6.20e8i·13-s
− 1.56e10·14-s + (9.87e9 + 2.39e8i)15-s + 3.59e10·16-s
− 9.78e9i·17-s + ⋯
|
L(s) = 1 | − 1.82i·2-s − 0.995i·3-s − 2.32·4-s
+ (−0.0242 + 0.999i)5-s − 1.81·6-s − 1.55i·7-s
+ 2.42i·8-s + 0.00960·9-s + (1.82 + 0.0442i)10-s
− 0.478·11-s + 2.31i·12-s + 0.210i·13-s
− 2.83·14-s + (0.994 + 0.0241i)15-s + 2.09·16-s
− 0.340i·17-s + ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & (0.0242 - 0.999i)\, \overline{\Lambda}(18-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr
=\mathstrut & (0.0242 - 0.999i)\, \overline{\Lambda}(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \neq 5$,
\(F_p\) is a polynomial of degree 2. If $p = 5$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 5 | \( 1 + (2.11e4 - 8.73e5i)T \) |
good | 2 | \( 1 + 660. iT - 1.31e5T^{2} \) |
| 3 | \( 1 + 1.13e4iT - 1.29e8T^{2} \) |
| 7 | \( 1 + 2.37e7iT - 2.32e14T^{2} \) |
| 11 | \( 1 + 3.40e8T + 5.05e17T^{2} \) |
| 13 | \( 1 - 6.20e8iT - 8.65e18T^{2} \) |
| 17 | \( 1 + 9.78e9iT - 8.27e20T^{2} \) |
| 19 | \( 1 + 3.92e10T + 5.48e21T^{2} \) |
| 23 | \( 1 - 2.44e11iT - 1.41e23T^{2} \) |
| 29 | \( 1 + 3.98e12T + 7.25e24T^{2} \) |
| 31 | \( 1 - 2.84e12T + 2.25e25T^{2} \) |
| 37 | \( 1 + 2.87e13iT - 4.56e26T^{2} \) |
| 41 | \( 1 - 2.58e13T + 2.61e27T^{2} \) |
| 43 | \( 1 + 7.92e13iT - 5.87e27T^{2} \) |
| 47 | \( 1 + 3.42e13iT - 2.66e28T^{2} \) |
| 53 | \( 1 + 6.28e14iT - 2.05e29T^{2} \) |
| 59 | \( 1 - 1.43e15T + 1.27e30T^{2} \) |
| 61 | \( 1 + 1.41e15T + 2.24e30T^{2} \) |
| 67 | \( 1 - 3.52e14iT - 1.10e31T^{2} \) |
| 71 | \( 1 - 5.76e15T + 2.96e31T^{2} \) |
| 73 | \( 1 - 1.24e15iT - 4.74e31T^{2} \) |
| 79 | \( 1 + 8.16e15T + 1.81e32T^{2} \) |
| 83 | \( 1 + 2.09e16iT - 4.21e32T^{2} \) |
| 89 | \( 1 + 2.91e16T + 1.37e33T^{2} \) |
| 97 | \( 1 - 4.58e16iT - 5.95e33T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−18.76380678809428641002948778052, −17.63895411100998515324843931022, −13.97059121943516090253795898691, −13.01325077663794311172844152039, −11.26736725668730067408136636297, −10.12107159547421820130246946691, −7.35592137097598665093700409895, −3.80901103716293605637354387970, −2.02167465799960000664627427316, −0.45987989328136317256592664141,
4.61312861597637042206629989323, 5.75839417192414805430177023377, 8.321300713309252373962981240855, 9.420505479614196650603761654917, 12.84509780401604970180215540129, 15.03388550416078894817418428872, 15.74259179206354578381779871500, 16.85574370268143149970430738791, 18.50257497010638558229581660427, 21.16297328605092292208067085614