Properties

Label 6-495e3-1.1-c5e3-0-2
Degree $6$
Conductor $121287375$
Sign $-1$
Analytic cond. $500376.$
Root an. cond. $8.91010$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·2-s − 11·4-s − 75·5-s − 172·7-s − 189·8-s − 525·10-s + 363·11-s − 654·13-s − 1.20e3·14-s − 427·16-s + 2.36e3·17-s − 2.87e3·19-s + 825·20-s + 2.54e3·22-s − 2.27e3·23-s + 3.75e3·25-s − 4.57e3·26-s + 1.89e3·28-s + 7.73e3·29-s + 568·31-s − 1.30e3·32-s + 1.65e4·34-s + 1.29e4·35-s − 9.12e3·37-s − 2.01e4·38-s + 1.41e4·40-s + 8.75e3·41-s + ⋯
L(s)  = 1  + 1.23·2-s − 0.343·4-s − 1.34·5-s − 1.32·7-s − 1.04·8-s − 1.66·10-s + 0.904·11-s − 1.07·13-s − 1.64·14-s − 0.416·16-s + 1.98·17-s − 1.82·19-s + 0.461·20-s + 1.11·22-s − 0.895·23-s + 6/5·25-s − 1.32·26-s + 0.456·28-s + 1.70·29-s + 0.106·31-s − 0.225·32-s + 2.45·34-s + 1.77·35-s − 1.09·37-s − 2.25·38-s + 1.40·40-s + 0.813·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 5^{3} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(500376.\)
Root analytic conductor: \(8.91010\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{6} \cdot 5^{3} \cdot 11^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{3} \)
11$C_1$ \( ( 1 - p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 - 7 T + 15 p^{2} T^{2} - 77 p^{2} T^{3} + 15 p^{7} T^{4} - 7 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 + 172 T + 53317 T^{2} + 5399144 T^{3} + 53317 p^{5} T^{4} + 172 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 654 T + 555091 T^{2} + 167732852 T^{3} + 555091 p^{5} T^{4} + 654 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 2366 T + 4754783 T^{2} - 6580937060 T^{3} + 4754783 p^{5} T^{4} - 2366 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 2872 T + 9249705 T^{2} + 14234256272 T^{3} + 9249705 p^{5} T^{4} + 2872 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 2272 T + 18049957 T^{2} + 25539838016 T^{3} + 18049957 p^{5} T^{4} + 2272 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 7738 T + 75886547 T^{2} - 322651167772 T^{3} + 75886547 p^{5} T^{4} - 7738 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 - 568 T + 83955741 T^{2} - 32812503440 T^{3} + 83955741 p^{5} T^{4} - 568 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 9126 T + 153307915 T^{2} + 1135693394116 T^{3} + 153307915 p^{5} T^{4} + 9126 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 8758 T + 117252903 T^{2} - 906684659284 T^{3} + 117252903 p^{5} T^{4} - 8758 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 14672 T + 370715025 T^{2} + 3794906879008 T^{3} + 370715025 p^{5} T^{4} + 14672 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 - 19392 T + 652921165 T^{2} - 7386008220288 T^{3} + 652921165 p^{5} T^{4} - 19392 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 4598 T + 900328507 T^{2} - 4574622258916 T^{3} + 900328507 p^{5} T^{4} - 4598 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 - 9348 T + 1646289553 T^{2} - 7098388384024 T^{3} + 1646289553 p^{5} T^{4} - 9348 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 60078 T + 49584271 p T^{2} + 87982416745556 T^{3} + 49584271 p^{6} T^{4} + 60078 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 38468 T + 3866400905 T^{2} + 95393272971992 T^{3} + 3866400905 p^{5} T^{4} + 38468 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 74032 T + 6098518645 T^{2} - 250129423986848 T^{3} + 6098518645 p^{5} T^{4} - 74032 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 44442 T + 6331091479 T^{2} + 174512379795884 T^{3} + 6331091479 p^{5} T^{4} + 44442 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 108116 T + 11158675133 T^{2} + 8537056071080 p T^{3} + 11158675133 p^{5} T^{4} + 108116 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 81892 T + 2009956905 T^{2} + 94678226672552 T^{3} + 2009956905 p^{5} T^{4} - 81892 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 167342 T + 25837929495 T^{2} + 2027809825205668 T^{3} + 25837929495 p^{5} T^{4} + 167342 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 159702 T + 28145564719 T^{2} - 2389832506953716 T^{3} + 28145564719 p^{5} T^{4} - 159702 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.550330587405674172816570520770, −9.010395154214905927803105305614, −8.702319673372563060516155202671, −8.677052352106941587611127375643, −8.100518724128599711542208575022, −7.945724898565198369811142546381, −7.55646680235958021801958189967, −7.23630259922108459755315303122, −6.74925773487906141427605329284, −6.70988621237361236478452124074, −6.20505484078671843287063878252, −5.86098245881673664806125340438, −5.76499954597584936839484300704, −4.91759293040884075549980072283, −4.82999171935734890545137962615, −4.68425990091553642943043223981, −4.17474443864646510043190153694, −3.86965023704842386845184881482, −3.65324627213714204116445865276, −3.29710285536882667458004093649, −2.95052587921969555281226826895, −2.56401086506499728258623315751, −1.96276813125334243520715600736, −1.24865251427612106427304733822, −0.976516323932939592350109957027, 0, 0, 0, 0.976516323932939592350109957027, 1.24865251427612106427304733822, 1.96276813125334243520715600736, 2.56401086506499728258623315751, 2.95052587921969555281226826895, 3.29710285536882667458004093649, 3.65324627213714204116445865276, 3.86965023704842386845184881482, 4.17474443864646510043190153694, 4.68425990091553642943043223981, 4.82999171935734890545137962615, 4.91759293040884075549980072283, 5.76499954597584936839484300704, 5.86098245881673664806125340438, 6.20505484078671843287063878252, 6.70988621237361236478452124074, 6.74925773487906141427605329284, 7.23630259922108459755315303122, 7.55646680235958021801958189967, 7.945724898565198369811142546381, 8.100518724128599711542208575022, 8.677052352106941587611127375643, 8.702319673372563060516155202671, 9.010395154214905927803105305614, 9.550330587405674172816570520770

Graph of the $Z$-function along the critical line