Properties

Label 2-4925-1.1-c1-0-168
Degree $2$
Conductor $4925$
Sign $1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 3·7-s − 3·9-s + 4·11-s + 2·13-s + 6·14-s − 4·16-s + 8·17-s − 6·18-s − 3·19-s + 8·22-s + 3·23-s + 4·26-s + 6·28-s + 7·29-s − 10·31-s − 8·32-s + 16·34-s − 6·36-s − 7·37-s − 6·38-s + 9·41-s − 43-s + 8·44-s + 6·46-s + 11·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.13·7-s − 9-s + 1.20·11-s + 0.554·13-s + 1.60·14-s − 16-s + 1.94·17-s − 1.41·18-s − 0.688·19-s + 1.70·22-s + 0.625·23-s + 0.784·26-s + 1.13·28-s + 1.29·29-s − 1.79·31-s − 1.41·32-s + 2.74·34-s − 36-s − 1.15·37-s − 0.973·38-s + 1.40·41-s − 0.152·43-s + 1.20·44-s + 0.884·46-s + 1.60·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.071009002\)
\(L(\frac12)\) \(\approx\) \(5.071009002\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.274186634151122597643469974243, −7.38321960705366179874531542523, −6.54013718671721998420560379289, −5.78671884243827565264966890450, −5.35946416359992619882619443150, −4.58640504680846064928838550970, −3.74621326726348715367743360170, −3.23747729221580895986788159609, −2.14457455330861137661769914181, −1.06964920838376654214460855629, 1.06964920838376654214460855629, 2.14457455330861137661769914181, 3.23747729221580895986788159609, 3.74621326726348715367743360170, 4.58640504680846064928838550970, 5.35946416359992619882619443150, 5.78671884243827565264966890450, 6.54013718671721998420560379289, 7.38321960705366179874531542523, 8.274186634151122597643469974243

Graph of the $Z$-function along the critical line