Properties

Label 8-490e4-1.1-c1e4-0-5
Degree $8$
Conductor $57648010000$
Sign $1$
Analytic cond. $234.364$
Root an. cond. $1.97804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 2·5-s + 3·9-s + 4·19-s + 2·20-s + 5·25-s + 4·29-s + 20·31-s + 3·36-s + 12·41-s + 6·45-s − 4·59-s − 18·61-s − 64-s + 24·71-s + 4·76-s − 20·79-s + 9·81-s + 14·89-s + 8·95-s + 5·100-s − 30·101-s + 10·109-s + 4·116-s + 22·121-s + 20·124-s + 22·125-s + ⋯
L(s)  = 1  + 1/2·4-s + 0.894·5-s + 9-s + 0.917·19-s + 0.447·20-s + 25-s + 0.742·29-s + 3.59·31-s + 1/2·36-s + 1.87·41-s + 0.894·45-s − 0.520·59-s − 2.30·61-s − 1/8·64-s + 2.84·71-s + 0.458·76-s − 2.25·79-s + 81-s + 1.48·89-s + 0.820·95-s + 1/2·100-s − 2.98·101-s + 0.957·109-s + 0.371·116-s + 2·121-s + 1.79·124-s + 1.96·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(234.364\)
Root analytic conductor: \(1.97804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.972157557\)
\(L(\frac12)\) \(\approx\) \(4.972157557\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good3$C_2$$\times$$C_2^2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 45 T^{2} + 1496 T^{4} + 45 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 10 T^{2} - 1269 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 61 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 30 T^{2} - 1309 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 2 T - 55 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 9 T + 20 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 85 T^{2} + 2736 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 + 10 T + 21 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 7 T - 40 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953842943244093041595531559095, −7.64559655388369570846117701483, −7.28215191276137394092523571041, −7.17895501754613818355807392718, −7.12258182110801217283522717325, −6.56490203397105135433768481944, −6.44921517520472811182374058573, −6.19577552967707319736947817390, −6.05766709280086773611765814882, −5.88428657233783682941557740431, −5.43560639884435732202053555320, −5.00118432280535199166807086174, −4.93192999322142060820396217217, −4.63395977760822236284572903696, −4.47060047473403568072882958158, −3.95106437028853899356553115478, −3.94005557007521707030496466276, −3.19718156470117231343074168530, −2.93846823101421540246862549715, −2.92051508017496846724223945429, −2.33423728391999526839941474582, −2.16947919147953350913857254703, −1.56559820086775594019784258294, −1.00916921836375522427923156611, −0.975520410458260499901207174180, 0.975520410458260499901207174180, 1.00916921836375522427923156611, 1.56559820086775594019784258294, 2.16947919147953350913857254703, 2.33423728391999526839941474582, 2.92051508017496846724223945429, 2.93846823101421540246862549715, 3.19718156470117231343074168530, 3.94005557007521707030496466276, 3.95106437028853899356553115478, 4.47060047473403568072882958158, 4.63395977760822236284572903696, 4.93192999322142060820396217217, 5.00118432280535199166807086174, 5.43560639884435732202053555320, 5.88428657233783682941557740431, 6.05766709280086773611765814882, 6.19577552967707319736947817390, 6.44921517520472811182374058573, 6.56490203397105135433768481944, 7.12258182110801217283522717325, 7.17895501754613818355807392718, 7.28215191276137394092523571041, 7.64559655388369570846117701483, 7.953842943244093041595531559095

Graph of the $Z$-function along the critical line