Properties

Label 8-7e8-1.1-c5e4-0-2
Degree $8$
Conductor $5764801$
Sign $1$
Analytic cond. $3814.40$
Root an. cond. $2.80335$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·2-s + 6·3-s + 70·4-s + 18·5-s − 54·6-s − 585·8-s − 18·9-s − 162·10-s − 396·11-s + 420·12-s − 700·13-s + 108·15-s + 3.69e3·16-s − 1.80e3·17-s + 162·18-s + 3.26e3·19-s + 1.26e3·20-s + 3.56e3·22-s − 2.08e3·23-s − 3.51e3·24-s + 4.90e3·25-s + 6.30e3·26-s − 3.45e3·27-s + 1.33e4·29-s − 972·30-s + 20·31-s − 2.07e4·32-s + ⋯
L(s)  = 1  − 1.59·2-s + 0.384·3-s + 2.18·4-s + 0.321·5-s − 0.612·6-s − 3.23·8-s − 0.0740·9-s − 0.512·10-s − 0.986·11-s + 0.841·12-s − 1.14·13-s + 0.123·15-s + 3.61·16-s − 1.51·17-s + 0.117·18-s + 2.07·19-s + 0.704·20-s + 1.56·22-s − 0.823·23-s − 1.24·24-s + 1.56·25-s + 1.82·26-s − 0.912·27-s + 2.95·29-s − 0.197·30-s + 0.00373·31-s − 3.58·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5764801 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5764801 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5764801\)    =    \(7^{8}\)
Sign: $1$
Analytic conductor: \(3814.40\)
Root analytic conductor: \(2.80335\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5764801,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.584238407\)
\(L(\frac12)\) \(\approx\) \(1.584238407\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
good2$D_4\times C_2$ \( 1 + 9 T + 11 T^{2} + 27 p T^{3} + 321 p^{2} T^{4} + 27 p^{6} T^{5} + 11 p^{10} T^{6} + 9 p^{15} T^{7} + p^{20} T^{8} \)
3$D_4\times C_2$ \( 1 - 2 p T + 2 p^{3} T^{2} + 112 p^{3} T^{3} - 833 p^{4} T^{4} + 112 p^{8} T^{5} + 2 p^{13} T^{6} - 2 p^{16} T^{7} + p^{20} T^{8} \)
5$D_4\times C_2$ \( 1 - 18 T - 4582 T^{2} + 24192 T^{3} + 13290711 T^{4} + 24192 p^{5} T^{5} - 4582 p^{10} T^{6} - 18 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 36 p T + 14618 T^{2} - 6476544 p T^{3} - 30972527013 T^{4} - 6476544 p^{6} T^{5} + 14618 p^{10} T^{6} + 36 p^{16} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 + 350 T + 546978 T^{2} + 350 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 1800 T - 327406 T^{2} + 1309845600 T^{3} + 6110054988387 T^{4} + 1309845600 p^{5} T^{5} - 327406 p^{10} T^{6} + 1800 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 - 3266 T + 3052486 T^{2} - 8694327152 T^{3} + 25434097510255 T^{4} - 8694327152 p^{5} T^{5} + 3052486 p^{10} T^{6} - 3266 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 2088 T - 5005486 T^{2} - 7323568128 T^{3} + 18220213963059 T^{4} - 7323568128 p^{5} T^{5} - 5005486 p^{10} T^{6} + 2088 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 - 6696 T + 51326470 T^{2} - 6696 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 20 T - 53102702 T^{2} + 83104000 T^{3} + 2000299703381203 T^{4} + 83104000 p^{5} T^{5} - 53102702 p^{10} T^{6} - 20 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 + 6232 T - 105404246 T^{2} + 34613500192 T^{3} + 13304021988037483 T^{4} + 34613500192 p^{5} T^{5} - 105404246 p^{10} T^{6} + 6232 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 6048 T + 223864366 T^{2} + 6048 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 3020 T - 30383466 T^{2} + 3020 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 11700 T - 155845582 T^{2} - 1941666854400 T^{3} + 1699950724818675 T^{4} - 1941666854400 p^{5} T^{5} - 155845582 p^{10} T^{6} + 11700 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 9468 T - 768542206 T^{2} + 206347902192 T^{3} + 524106110008949019 T^{4} + 206347902192 p^{5} T^{5} - 768542206 p^{10} T^{6} + 9468 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 - 43938 T + 77947910 T^{2} - 18574848201168 T^{3} + 1540814198098501599 T^{4} - 18574848201168 p^{5} T^{5} + 77947910 p^{10} T^{6} - 43938 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 64754 T + 1784759098 T^{2} - 46566467351264 T^{3} + 1545208847125876807 T^{4} - 46566467351264 p^{5} T^{5} + 1784759098 p^{10} T^{6} - 64754 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 + 24784 T - 2185712534 T^{2} + 2471187261184 T^{3} + 5187623828957302459 T^{4} + 2471187261184 p^{5} T^{5} - 2185712534 p^{10} T^{6} + 24784 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 97416 T + 5729557966 T^{2} - 97416 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 17452 T - 3524050070 T^{2} - 5541373211024 T^{3} + 9729323261552877955 T^{4} - 5541373211024 p^{5} T^{5} - 3524050070 p^{10} T^{6} + 17452 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 + 51256 T - 1018388318 T^{2} - 128578082161664 T^{3} - 4262099135233950749 T^{4} - 128578082161664 p^{5} T^{5} - 1018388318 p^{10} T^{6} + 51256 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 - 117558 T + 7798161502 T^{2} - 117558 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 84276 T + 1186746746 T^{2} - 442653071637168 T^{3} - 35846714358645397725 T^{4} - 442653071637168 p^{5} T^{5} + 1186746746 p^{10} T^{6} + 84276 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 - 20776 T + 16174049358 T^{2} - 20776 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26901664698926457758472585501, −10.16397236139366064825057714554, −9.966238153407530358170728604847, −9.785581539444798938856820594136, −9.217923958548189665202720973911, −9.035971162101033416462318401295, −8.651094269527156004196041444395, −8.270325144016314394138408746362, −8.144242333569784604442256469799, −7.74115866419855444260753250448, −7.27394421430890433473679652836, −6.84482566615479302024227384267, −6.67656425708448539525260830671, −6.45462510759515464325338775855, −5.82839495383027326556469513760, −5.24738485581897909930788037400, −4.99881473836371136679241936467, −4.65935774341676443746581319712, −3.43858696968138619582279864914, −3.30690619880750546809241072502, −2.64126999312186990840447280197, −2.28808239377355775953340333668, −1.92516815841393106644699527540, −0.72654830228491006091116332649, −0.57190253216914595809808973200, 0.57190253216914595809808973200, 0.72654830228491006091116332649, 1.92516815841393106644699527540, 2.28808239377355775953340333668, 2.64126999312186990840447280197, 3.30690619880750546809241072502, 3.43858696968138619582279864914, 4.65935774341676443746581319712, 4.99881473836371136679241936467, 5.24738485581897909930788037400, 5.82839495383027326556469513760, 6.45462510759515464325338775855, 6.67656425708448539525260830671, 6.84482566615479302024227384267, 7.27394421430890433473679652836, 7.74115866419855444260753250448, 8.144242333569784604442256469799, 8.270325144016314394138408746362, 8.651094269527156004196041444395, 9.035971162101033416462318401295, 9.217923958548189665202720973911, 9.785581539444798938856820594136, 9.966238153407530358170728604847, 10.16397236139366064825057714554, 10.26901664698926457758472585501

Graph of the $Z$-function along the critical line