Properties

Label 4-7e4-1.1-c11e2-0-1
Degree $4$
Conductor $2401$
Sign $1$
Analytic cond. $1417.43$
Root an. cond. $6.13586$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24·2-s − 252·3-s + 2.04e3·4-s − 4.83e3·5-s − 6.04e3·6-s + 1.33e5·8-s + 1.77e5·9-s − 1.15e5·10-s − 5.34e5·11-s − 5.16e5·12-s − 1.15e6·13-s + 1.21e6·15-s + 3.20e6·16-s + 6.90e6·17-s + 4.25e6·18-s − 1.06e7·19-s − 9.89e6·20-s − 1.28e7·22-s − 1.86e7·23-s − 3.36e7·24-s + 4.88e7·25-s − 2.77e7·26-s − 1.17e8·27-s + 2.56e8·29-s + 2.92e7·30-s + 5.28e7·31-s + 2.73e8·32-s + ⋯
L(s)  = 1  + 0.530·2-s − 0.598·3-s + 4-s − 0.691·5-s − 0.317·6-s + 1.44·8-s + 9-s − 0.366·10-s − 1.00·11-s − 0.598·12-s − 0.863·13-s + 0.413·15-s + 0.764·16-s + 1.17·17-s + 0.530·18-s − 0.987·19-s − 0.691·20-s − 0.530·22-s − 0.603·23-s − 0.863·24-s + 25-s − 0.457·26-s − 1.58·27-s + 2.32·29-s + 0.219·30-s + 0.331·31-s + 1.44·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $1$
Analytic conductor: \(1417.43\)
Root analytic conductor: \(6.13586\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2401,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(3.224242470\)
\(L(\frac12)\) \(\approx\) \(3.224242470\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
good2$C_2^2$ \( 1 - 3 p^{3} T - 23 p^{6} T^{2} - 3 p^{14} T^{3} + p^{22} T^{4} \)
3$C_2^2$ \( 1 + 28 p^{2} T - 1403 p^{4} T^{2} + 28 p^{13} T^{3} + p^{22} T^{4} \)
5$C_2^2$ \( 1 + 966 p T - 1019969 p^{2} T^{2} + 966 p^{12} T^{3} + p^{22} T^{4} \)
11$C_2^2$ \( 1 + 534612 T + 498319933 T^{2} + 534612 p^{11} T^{3} + p^{22} T^{4} \)
13$C_2$ \( ( 1 + 577738 T + p^{11} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 6905934 T + 13420028104723 T^{2} - 6905934 p^{11} T^{3} + p^{22} T^{4} \)
19$C_2^2$ \( 1 + 10661420 T - 2824382481819 T^{2} + 10661420 p^{11} T^{3} + p^{22} T^{4} \)
23$C_2^2$ \( 1 + 18643272 T - 605238167047943 T^{2} + 18643272 p^{11} T^{3} + p^{22} T^{4} \)
29$C_2$ \( ( 1 - 128406630 T + p^{11} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 52843168 T - 22616076492128607 T^{2} - 52843168 p^{11} T^{3} + p^{22} T^{4} \)
37$C_2^2$ \( 1 - 182213314 T - 144715929980597817 T^{2} - 182213314 p^{11} T^{3} + p^{22} T^{4} \)
41$C_2$ \( ( 1 - 308120442 T + p^{11} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 17125708 T + p^{11} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 2687348496 T + 4749682723869449713 T^{2} + 2687348496 p^{11} T^{3} + p^{22} T^{4} \)
53$C_2^2$ \( 1 - 1596055698 T - 6721642138253924393 T^{2} - 1596055698 p^{11} T^{3} + p^{22} T^{4} \)
59$C_2^2$ \( 1 - 5189203740 T - 3228052989507855059 T^{2} - 5189203740 p^{11} T^{3} + p^{22} T^{4} \)
61$C_2^2$ \( 1 + 6956478662 T + 4878677763425471583 T^{2} + 6956478662 p^{11} T^{3} + p^{22} T^{4} \)
67$C_2^2$ \( 1 - 15481826884 T + \)\(11\!\cdots\!73\)\( T^{2} - 15481826884 p^{11} T^{3} + p^{22} T^{4} \)
71$C_2$ \( ( 1 - 9791485272 T + p^{11} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 1463791322 T - \)\(31\!\cdots\!93\)\( T^{2} + 1463791322 p^{11} T^{3} + p^{22} T^{4} \)
79$C_2^2$ \( 1 + 38116845680 T + \)\(70\!\cdots\!21\)\( T^{2} + 38116845680 p^{11} T^{3} + p^{22} T^{4} \)
83$C_2$ \( ( 1 + 29335099668 T + p^{11} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 24992917110 T - \)\(21\!\cdots\!89\)\( T^{2} - 24992917110 p^{11} T^{3} + p^{22} T^{4} \)
97$C_2$ \( ( 1 - 75013568546 T + p^{11} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13349775019279273151327031352, −12.99240613998643564270261948849, −12.25895772527501664081179199184, −11.84437114243267470670993820132, −11.26720874824352094659607559322, −10.55105311207253810108195228541, −10.23806418134221626567506843141, −9.720625330119521027864389416988, −8.236403130062008967508078268070, −7.940152678705052870808684871887, −7.24231622781944076694016136289, −6.75751022600719580827887321387, −6.01786870573064180676889169166, −5.05470568205721414125637847223, −4.63671004275728892678313703856, −3.96355925860512980909503467941, −2.89273903337605532608445643363, −2.23785162338011025142793011613, −1.31534622720672426529265478590, −0.51578049789593408582365466727, 0.51578049789593408582365466727, 1.31534622720672426529265478590, 2.23785162338011025142793011613, 2.89273903337605532608445643363, 3.96355925860512980909503467941, 4.63671004275728892678313703856, 5.05470568205721414125637847223, 6.01786870573064180676889169166, 6.75751022600719580827887321387, 7.24231622781944076694016136289, 7.940152678705052870808684871887, 8.236403130062008967508078268070, 9.720625330119521027864389416988, 10.23806418134221626567506843141, 10.55105311207253810108195228541, 11.26720874824352094659607559322, 11.84437114243267470670993820132, 12.25895772527501664081179199184, 12.99240613998643564270261948849, 13.13349775019279273151327031352

Graph of the $Z$-function along the critical line