Properties

Label 4-4864e2-1.1-c1e2-0-5
Degree $4$
Conductor $23658496$
Sign $1$
Analytic cond. $1508.48$
Root an. cond. $6.23211$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 6·9-s + 6·11-s − 6·17-s − 2·19-s − 7·25-s + 4·27-s − 24·33-s − 12·41-s + 2·43-s − 11·49-s + 24·51-s + 8·57-s + 12·59-s − 8·67-s + 2·73-s + 28·75-s − 37·81-s + 24·83-s + 8·97-s + 36·99-s + 12·107-s − 36·113-s + 5·121-s + 48·123-s + 127-s − 8·129-s + ⋯
L(s)  = 1  − 2.30·3-s + 2·9-s + 1.80·11-s − 1.45·17-s − 0.458·19-s − 7/5·25-s + 0.769·27-s − 4.17·33-s − 1.87·41-s + 0.304·43-s − 1.57·49-s + 3.36·51-s + 1.05·57-s + 1.56·59-s − 0.977·67-s + 0.234·73-s + 3.23·75-s − 4.11·81-s + 2.63·83-s + 0.812·97-s + 3.61·99-s + 1.16·107-s − 3.38·113-s + 5/11·121-s + 4.32·123-s + 0.0887·127-s − 0.704·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23658496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23658496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(23658496\)    =    \(2^{16} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1508.48\)
Root analytic conductor: \(6.23211\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 23658496,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.890098194081383287401025279219, −7.86247178170391644231281725966, −6.96483992214302621772782299976, −6.74773789847706140614702122488, −6.61087264466814400114919753128, −6.29948891499780074984969109326, −6.03271744589960930199647233250, −5.51194389006493875070341859208, −5.27643413595791840557371315705, −4.85345080123550281169158570368, −4.36238618832976049279431756856, −4.28662839023784457144388060225, −3.50608547955028473788542284958, −3.43073510329859146904243713501, −2.42275743228573031372196572663, −2.07675659219047051748061649060, −1.39940359562148139047100422170, −0.982578941467437418203549684328, 0, 0, 0.982578941467437418203549684328, 1.39940359562148139047100422170, 2.07675659219047051748061649060, 2.42275743228573031372196572663, 3.43073510329859146904243713501, 3.50608547955028473788542284958, 4.28662839023784457144388060225, 4.36238618832976049279431756856, 4.85345080123550281169158570368, 5.27643413595791840557371315705, 5.51194389006493875070341859208, 6.03271744589960930199647233250, 6.29948891499780074984969109326, 6.61087264466814400114919753128, 6.74773789847706140614702122488, 6.96483992214302621772782299976, 7.86247178170391644231281725966, 7.890098194081383287401025279219

Graph of the $Z$-function along the critical line