Properties

Label 2-483-161.4-c1-0-2
Degree $2$
Conductor $483$
Sign $-0.541 - 0.840i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.111 + 0.157i)2-s + (0.235 − 0.971i)3-s + (0.641 + 1.85i)4-s + (−0.171 + 3.59i)5-s + (0.126 + 0.145i)6-s + (−2.30 − 1.29i)7-s + (−0.733 − 0.215i)8-s + (−0.888 − 0.458i)9-s + (−0.545 − 0.428i)10-s + (1.58 + 2.21i)11-s + (1.95 − 0.186i)12-s + (0.00476 − 0.0331i)13-s + (0.461 − 0.218i)14-s + (3.45 + 1.01i)15-s + (−2.96 + 2.33i)16-s + (−7.18 + 1.38i)17-s + ⋯
L(s)  = 1  + (−0.0791 + 0.111i)2-s + (0.136 − 0.561i)3-s + (0.320 + 0.927i)4-s + (−0.0765 + 1.60i)5-s + (0.0515 + 0.0595i)6-s + (−0.872 − 0.488i)7-s + (−0.259 − 0.0761i)8-s + (−0.296 − 0.152i)9-s + (−0.172 − 0.135i)10-s + (0.476 + 0.669i)11-s + (0.564 − 0.0538i)12-s + (0.00132 − 0.00919i)13-s + (0.123 − 0.0583i)14-s + (0.890 + 0.261i)15-s + (−0.742 + 0.583i)16-s + (−1.74 + 0.335i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.541 - 0.840i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.541 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-0.541 - 0.840i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ -0.541 - 0.840i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.516610 + 0.946838i\)
\(L(\frac12)\) \(\approx\) \(0.516610 + 0.946838i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.235 + 0.971i)T \)
7 \( 1 + (2.30 + 1.29i)T \)
23 \( 1 + (-1.86 + 4.41i)T \)
good2 \( 1 + (0.111 - 0.157i)T + (-0.654 - 1.89i)T^{2} \)
5 \( 1 + (0.171 - 3.59i)T + (-4.97 - 0.475i)T^{2} \)
11 \( 1 + (-1.58 - 2.21i)T + (-3.59 + 10.3i)T^{2} \)
13 \( 1 + (-0.00476 + 0.0331i)T + (-12.4 - 3.66i)T^{2} \)
17 \( 1 + (7.18 - 1.38i)T + (15.7 - 6.31i)T^{2} \)
19 \( 1 + (-1.20 - 0.231i)T + (17.6 + 7.06i)T^{2} \)
29 \( 1 + (-6.71 - 7.74i)T + (-4.12 + 28.7i)T^{2} \)
31 \( 1 + (2.29 - 2.18i)T + (1.47 - 30.9i)T^{2} \)
37 \( 1 + (8.07 + 4.16i)T + (21.4 + 30.1i)T^{2} \)
41 \( 1 + (-8.26 - 5.30i)T + (17.0 + 37.2i)T^{2} \)
43 \( 1 + (-1.84 + 0.541i)T + (36.1 - 23.2i)T^{2} \)
47 \( 1 + (-4.78 - 8.28i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-4.54 - 1.82i)T + (38.3 + 36.5i)T^{2} \)
59 \( 1 + (0.227 + 0.179i)T + (13.9 + 57.3i)T^{2} \)
61 \( 1 + (2.27 + 9.39i)T + (-54.2 + 27.9i)T^{2} \)
67 \( 1 + (-13.4 - 1.28i)T + (65.7 + 12.6i)T^{2} \)
71 \( 1 + (-1.59 - 3.49i)T + (-46.4 + 53.6i)T^{2} \)
73 \( 1 + (-3.27 - 9.47i)T + (-57.3 + 45.1i)T^{2} \)
79 \( 1 + (-14.8 + 5.94i)T + (57.1 - 54.5i)T^{2} \)
83 \( 1 + (3.51 - 2.26i)T + (34.4 - 75.4i)T^{2} \)
89 \( 1 + (1.14 + 1.09i)T + (4.23 + 88.8i)T^{2} \)
97 \( 1 + (10.8 + 6.95i)T + (40.2 + 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03630954751839408686568358758, −10.74627616452968884749917970997, −9.436334616281568583020418515276, −8.469549492691309111271898811755, −7.21341205309873354289786733965, −6.88560690715923542300347673454, −6.36997401251352308126567083883, −4.19798052329955884433369920666, −3.17887534926606868069081473918, −2.36184124511924427967571814071, 0.63254619755437406314836604168, 2.32908888111339424353297567291, 3.95617606027818213337378617689, 5.03966273047272429448104606040, 5.78641645151551856263361643234, 6.77140533781431440397429098862, 8.416336282667658890081766725544, 9.189951033203268090360174385306, 9.449961669190406242698821399465, 10.60725919845877400911934949283

Graph of the $Z$-function along the critical line