Properties

Label 2-483-23.9-c1-0-13
Degree $2$
Conductor $483$
Sign $0.426 + 0.904i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.52 + 0.449i)2-s + (−0.654 − 0.755i)3-s + (0.455 − 0.293i)4-s + (0.142 + 0.989i)5-s + (1.34 + 0.861i)6-s + (0.415 − 0.909i)7-s + (1.52 − 1.75i)8-s + (−0.142 + 0.989i)9-s + (−0.662 − 1.45i)10-s + (−2.84 − 0.835i)11-s + (−0.520 − 0.152i)12-s + (1.10 + 2.42i)13-s + (−0.226 + 1.57i)14-s + (0.654 − 0.755i)15-s + (−1.98 + 4.35i)16-s + (−4.41 − 2.83i)17-s + ⋯
L(s)  = 1  + (−1.08 + 0.317i)2-s + (−0.378 − 0.436i)3-s + (0.227 − 0.146i)4-s + (0.0636 + 0.442i)5-s + (0.547 + 0.351i)6-s + (0.157 − 0.343i)7-s + (0.538 − 0.621i)8-s + (−0.0474 + 0.329i)9-s + (−0.209 − 0.458i)10-s + (−0.858 − 0.252i)11-s + (−0.150 − 0.0440i)12-s + (0.307 + 0.673i)13-s + (−0.0606 + 0.421i)14-s + (0.169 − 0.195i)15-s + (−0.497 + 1.08i)16-s + (−1.06 − 0.687i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.426 + 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.426 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.426 + 0.904i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (400, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.426 + 0.904i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.426513 - 0.270586i\)
\(L(\frac12)\) \(\approx\) \(0.426513 - 0.270586i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.654 + 0.755i)T \)
7 \( 1 + (-0.415 + 0.909i)T \)
23 \( 1 + (-3.73 - 3.01i)T \)
good2 \( 1 + (1.52 - 0.449i)T + (1.68 - 1.08i)T^{2} \)
5 \( 1 + (-0.142 - 0.989i)T + (-4.79 + 1.40i)T^{2} \)
11 \( 1 + (2.84 + 0.835i)T + (9.25 + 5.94i)T^{2} \)
13 \( 1 + (-1.10 - 2.42i)T + (-8.51 + 9.82i)T^{2} \)
17 \( 1 + (4.41 + 2.83i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-1.87 + 1.20i)T + (7.89 - 17.2i)T^{2} \)
29 \( 1 + (6.05 + 3.89i)T + (12.0 + 26.3i)T^{2} \)
31 \( 1 + (-6.01 + 6.93i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (-1.44 + 10.0i)T + (-35.5 - 10.4i)T^{2} \)
41 \( 1 + (1.04 + 7.26i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (4.45 + 5.13i)T + (-6.11 + 42.5i)T^{2} \)
47 \( 1 - 6.10T + 47T^{2} \)
53 \( 1 + (0.585 - 1.28i)T + (-34.7 - 40.0i)T^{2} \)
59 \( 1 + (4.58 + 10.0i)T + (-38.6 + 44.5i)T^{2} \)
61 \( 1 + (2.11 - 2.43i)T + (-8.68 - 60.3i)T^{2} \)
67 \( 1 + (-13.2 + 3.90i)T + (56.3 - 36.2i)T^{2} \)
71 \( 1 + (-11.2 + 3.30i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (4.02 - 2.58i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (-6.30 - 13.8i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (1.41 - 9.82i)T + (-79.6 - 23.3i)T^{2} \)
89 \( 1 + (3.36 + 3.88i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-1.48 - 10.3i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03320671723607673736754831659, −9.761303661401779798026185753547, −9.041718437088745302996437400160, −8.024743365551516290514350491348, −7.24046744356225422353349804811, −6.63922327348981965014025030632, −5.30665705004671012113511969512, −4.02014711815903424442156554349, −2.28544615703709038671657901214, −0.51973339064833922302058213659, 1.27890950361758601942651046605, 2.88815469962040436057406342996, 4.70184675787219996747663505297, 5.26104687067170595216948567884, 6.61218604452750462707584118115, 7.971206842031117985953417998665, 8.604977250282441766593570271392, 9.353022438552112417494760672072, 10.36277394987317576561788522252, 10.76020778759524270750095055472

Graph of the $Z$-function along the critical line