Properties

Label 2-483-161.66-c1-0-13
Degree $2$
Conductor $483$
Sign $0.0873 - 0.996i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0565 − 0.0444i)2-s + (−0.814 + 0.580i)3-s + (−0.470 + 1.93i)4-s + (4.36 + 0.841i)5-s + (−0.0202 + 0.0689i)6-s + (1.52 + 2.16i)7-s + (0.119 + 0.261i)8-s + (0.327 − 0.945i)9-s + (0.284 − 0.146i)10-s + (−2.94 + 3.74i)11-s + (−0.741 − 1.85i)12-s + (2.81 − 4.37i)13-s + (0.182 + 0.0546i)14-s + (−4.04 + 1.84i)15-s + (−3.52 − 1.81i)16-s + (2.37 − 2.26i)17-s + ⋯
L(s)  = 1  + (0.0399 − 0.0314i)2-s + (−0.470 + 0.334i)3-s + (−0.235 + 0.969i)4-s + (1.95 + 0.376i)5-s + (−0.00826 + 0.0281i)6-s + (0.575 + 0.817i)7-s + (0.0421 + 0.0923i)8-s + (0.109 − 0.315i)9-s + (0.0898 − 0.0463i)10-s + (−0.887 + 1.12i)11-s + (−0.214 − 0.534i)12-s + (0.780 − 1.21i)13-s + (0.0486 + 0.0146i)14-s + (−1.04 + 0.476i)15-s + (−0.881 − 0.454i)16-s + (0.575 − 0.548i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0873 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0873 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.0873 - 0.996i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (388, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.0873 - 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22095 + 1.11855i\)
\(L(\frac12)\) \(\approx\) \(1.22095 + 1.11855i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.814 - 0.580i)T \)
7 \( 1 + (-1.52 - 2.16i)T \)
23 \( 1 + (3.81 + 2.90i)T \)
good2 \( 1 + (-0.0565 + 0.0444i)T + (0.471 - 1.94i)T^{2} \)
5 \( 1 + (-4.36 - 0.841i)T + (4.64 + 1.85i)T^{2} \)
11 \( 1 + (2.94 - 3.74i)T + (-2.59 - 10.6i)T^{2} \)
13 \( 1 + (-2.81 + 4.37i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (-2.37 + 2.26i)T + (0.808 - 16.9i)T^{2} \)
19 \( 1 + (2.63 + 2.51i)T + (0.904 + 18.9i)T^{2} \)
29 \( 1 + (1.25 + 0.368i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (0.457 - 4.78i)T + (-30.4 - 5.86i)T^{2} \)
37 \( 1 + (3.22 + 1.11i)T + (29.0 + 22.8i)T^{2} \)
41 \( 1 + (1.13 + 0.986i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-6.41 - 2.92i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 + (-3.38 + 1.95i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (3.69 - 0.176i)T + (52.7 - 5.03i)T^{2} \)
59 \( 1 + (2.25 + 4.38i)T + (-34.2 + 48.0i)T^{2} \)
61 \( 1 + (0.636 - 0.893i)T + (-19.9 - 57.6i)T^{2} \)
67 \( 1 + (-1.84 + 4.61i)T + (-48.4 - 46.2i)T^{2} \)
71 \( 1 + (1.79 + 12.4i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-3.87 - 0.939i)T + (64.8 + 33.4i)T^{2} \)
79 \( 1 + (-4.30 - 0.205i)T + (78.6 + 7.50i)T^{2} \)
83 \( 1 + (7.78 + 8.98i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (3.35 - 0.320i)T + (87.3 - 16.8i)T^{2} \)
97 \( 1 + (5.86 - 6.77i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.95052664912508679180520170168, −10.35156074840365851990695671181, −9.473583614139271913235247921895, −8.661159598084352437759425972204, −7.57732529286520106581333024487, −6.37617785046402036277102078624, −5.44203404042247539592617461141, −4.81530393614187920941148745743, −2.99312045784056002705531763507, −2.09408480095035527739846292974, 1.19305602340965974416096549483, 1.99534306751682057079686340744, 4.24880584953234507755506058075, 5.54050889919645040900178551612, 5.82069136977342730663204225105, 6.68803507846992233048157231787, 8.202780079648051867326078677487, 9.139626703549586998178350209434, 10.09579820327338894838085269388, 10.59850919603778863989468698019

Graph of the $Z$-function along the critical line