Properties

Label 2-483-161.66-c1-0-17
Degree $2$
Conductor $483$
Sign $0.870 + 0.492i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.03 + 0.813i)2-s + (0.814 − 0.580i)3-s + (−0.0634 + 0.261i)4-s + (−0.255 − 0.0493i)5-s + (−0.370 + 1.26i)6-s + (−2.61 − 0.373i)7-s + (−1.24 − 2.71i)8-s + (0.327 − 0.945i)9-s + (0.304 − 0.157i)10-s + (1.25 − 1.59i)11-s + (0.0999 + 0.249i)12-s + (1.10 − 1.71i)13-s + (3.01 − 1.74i)14-s + (−0.237 + 0.108i)15-s + (3.01 + 1.55i)16-s + (5.65 − 5.38i)17-s + ⋯
L(s)  = 1  + (−0.731 + 0.575i)2-s + (0.470 − 0.334i)3-s + (−0.0317 + 0.130i)4-s + (−0.114 − 0.0220i)5-s + (−0.151 + 0.515i)6-s + (−0.990 − 0.141i)7-s + (−0.438 − 0.960i)8-s + (0.109 − 0.315i)9-s + (0.0963 − 0.0496i)10-s + (0.377 − 0.480i)11-s + (0.0288 + 0.0720i)12-s + (0.305 − 0.475i)13-s + (0.805 − 0.466i)14-s + (−0.0612 + 0.0279i)15-s + (0.753 + 0.388i)16-s + (1.37 − 1.30i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.870 + 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.870 + 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.870 + 0.492i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (388, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.870 + 0.492i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.865262 - 0.227670i\)
\(L(\frac12)\) \(\approx\) \(0.865262 - 0.227670i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.814 + 0.580i)T \)
7 \( 1 + (2.61 + 0.373i)T \)
23 \( 1 + (-4.54 - 1.52i)T \)
good2 \( 1 + (1.03 - 0.813i)T + (0.471 - 1.94i)T^{2} \)
5 \( 1 + (0.255 + 0.0493i)T + (4.64 + 1.85i)T^{2} \)
11 \( 1 + (-1.25 + 1.59i)T + (-2.59 - 10.6i)T^{2} \)
13 \( 1 + (-1.10 + 1.71i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (-5.65 + 5.38i)T + (0.808 - 16.9i)T^{2} \)
19 \( 1 + (-0.566 - 0.539i)T + (0.904 + 18.9i)T^{2} \)
29 \( 1 + (-2.59 - 0.761i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (-0.0699 + 0.732i)T + (-30.4 - 5.86i)T^{2} \)
37 \( 1 + (9.20 + 3.18i)T + (29.0 + 22.8i)T^{2} \)
41 \( 1 + (5.57 + 4.82i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-10.1 - 4.63i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 + (-8.06 + 4.65i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (3.40 - 0.162i)T + (52.7 - 5.03i)T^{2} \)
59 \( 1 + (6.10 + 11.8i)T + (-34.2 + 48.0i)T^{2} \)
61 \( 1 + (5.30 - 7.44i)T + (-19.9 - 57.6i)T^{2} \)
67 \( 1 + (-4.50 + 11.2i)T + (-48.4 - 46.2i)T^{2} \)
71 \( 1 + (0.470 + 3.27i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-7.87 - 1.91i)T + (64.8 + 33.4i)T^{2} \)
79 \( 1 + (9.01 + 0.429i)T + (78.6 + 7.50i)T^{2} \)
83 \( 1 + (-10.8 - 12.5i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (-5.44 + 0.519i)T + (87.3 - 16.8i)T^{2} \)
97 \( 1 + (8.55 - 9.86i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64003825310654864060570374246, −9.580217734369022019849765394842, −9.151173020151012451947454172379, −8.116842039795522440424314703429, −7.38729442362893610096932166577, −6.64422895488311481807206665836, −5.56224927555834101466302994978, −3.70401973871562770505113069700, −3.04288703489811368286750558483, −0.71936339692783610782536417333, 1.47364453260071407178467151673, 2.90752089608566299599173868996, 3.97081985555463168899743798984, 5.43244516135589436895349743384, 6.44580551529739589752721322585, 7.69420397172928115840018801470, 8.768523292701429271975943361463, 9.317312372140380075516821959407, 10.15503507794001688034596641141, 10.64886052297506693832045067214

Graph of the $Z$-function along the critical line