Properties

Label 2-48-1.1-c7-0-6
Degree $2$
Conductor $48$
Sign $-1$
Analytic cond. $14.9944$
Root an. cond. $3.87227$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 26·5-s − 1.05e3·7-s + 729·9-s − 6.41e3·11-s + 5.20e3·13-s − 702·15-s − 6.23e3·17-s − 4.14e4·19-s − 2.85e4·21-s + 2.94e4·23-s − 7.74e4·25-s + 1.96e4·27-s − 2.10e5·29-s − 1.85e5·31-s − 1.73e5·33-s + 2.74e4·35-s + 5.07e5·37-s + 1.40e5·39-s + 3.60e5·41-s − 6.20e5·43-s − 1.89e4·45-s + 8.47e5·47-s + 2.91e5·49-s − 1.68e5·51-s + 1.42e6·53-s + 1.66e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.0930·5-s − 1.16·7-s + 1/3·9-s − 1.45·11-s + 0.657·13-s − 0.0537·15-s − 0.307·17-s − 1.38·19-s − 0.671·21-s + 0.504·23-s − 0.991·25-s + 0.192·27-s − 1.60·29-s − 1.11·31-s − 0.838·33-s + 0.108·35-s + 1.64·37-s + 0.379·39-s + 0.815·41-s − 1.18·43-s − 0.0310·45-s + 1.19·47-s + 0.354·49-s − 0.177·51-s + 1.31·53-s + 0.135·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48\)    =    \(2^{4} \cdot 3\)
Sign: $-1$
Analytic conductor: \(14.9944\)
Root analytic conductor: \(3.87227\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
good5 \( 1 + 26 T + p^{7} T^{2} \)
7 \( 1 + 1056 T + p^{7} T^{2} \)
11 \( 1 + 6412 T + p^{7} T^{2} \)
13 \( 1 - 5206 T + p^{7} T^{2} \)
17 \( 1 + 6238 T + p^{7} T^{2} \)
19 \( 1 + 41492 T + p^{7} T^{2} \)
23 \( 1 - 29432 T + p^{7} T^{2} \)
29 \( 1 + 210498 T + p^{7} T^{2} \)
31 \( 1 + 185240 T + p^{7} T^{2} \)
37 \( 1 - 507630 T + p^{7} T^{2} \)
41 \( 1 - 360042 T + p^{7} T^{2} \)
43 \( 1 + 620044 T + p^{7} T^{2} \)
47 \( 1 - 847680 T + p^{7} T^{2} \)
53 \( 1 - 1423750 T + p^{7} T^{2} \)
59 \( 1 - 2548724 T + p^{7} T^{2} \)
61 \( 1 + 706058 T + p^{7} T^{2} \)
67 \( 1 - 2418796 T + p^{7} T^{2} \)
71 \( 1 + 265976 T + p^{7} T^{2} \)
73 \( 1 + 5791238 T + p^{7} T^{2} \)
79 \( 1 + 2955688 T + p^{7} T^{2} \)
83 \( 1 + 3462932 T + p^{7} T^{2} \)
89 \( 1 + 2211126 T + p^{7} T^{2} \)
97 \( 1 + 15594814 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13273670616632380300700129939, −13.03288315775664451280571003405, −11.05334461119430316061189230172, −9.896923050005125187814335985164, −8.681275451515645146454298564389, −7.36296398411236702394344515750, −5.85312353623453881465198245315, −3.87072238832342680346189485530, −2.42145820658498808701778317823, 0, 2.42145820658498808701778317823, 3.87072238832342680346189485530, 5.85312353623453881465198245315, 7.36296398411236702394344515750, 8.681275451515645146454298564389, 9.896923050005125187814335985164, 11.05334461119430316061189230172, 13.03288315775664451280571003405, 13.13273670616632380300700129939

Graph of the $Z$-function along the critical line