Properties

Label 4-48e2-1.1-c6e2-0-1
Degree $4$
Conductor $2304$
Sign $1$
Analytic cond. $121.938$
Root an. cond. $3.32304$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·5-s − 243·9-s − 5.30e3·13-s − 1.44e4·17-s − 3.11e4·25-s + 2.31e4·29-s + 4.46e4·37-s + 2.07e5·41-s − 2.91e3·45-s + 1.94e5·49-s + 3.36e5·53-s − 5.20e5·61-s − 6.36e4·65-s − 7.91e5·73-s + 5.90e4·81-s − 1.72e5·85-s − 5.03e5·89-s + 1.03e6·97-s + 2.04e6·101-s + 1.90e6·109-s − 2.42e5·113-s + 1.28e6·117-s + 3.12e6·121-s − 5.61e5·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.0959·5-s − 1/3·9-s − 2.41·13-s − 2.93·17-s − 1.99·25-s + 0.947·29-s + 0.882·37-s + 3.00·41-s − 0.0319·45-s + 1.65·49-s + 2.26·53-s − 2.29·61-s − 0.231·65-s − 2.03·73-s + 1/9·81-s − 0.281·85-s − 0.714·89-s + 1.13·97-s + 1.98·101-s + 1.47·109-s − 0.167·113-s + 0.805·117-s + 1.76·121-s − 0.287·125-s + 0.0909·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(121.938\)
Root analytic conductor: \(3.32304\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2304,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.8634100806\)
\(L(\frac12)\) \(\approx\) \(0.8634100806\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p^{5} T^{2} \)
good5$C_2$ \( ( 1 - 6 T + p^{6} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 194930 T^{2} + p^{12} T^{4} \)
11$C_2^2$ \( 1 - 3127970 T^{2} + p^{12} T^{4} \)
13$C_2$ \( ( 1 + 2654 T + p^{6} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 7206 T + p^{6} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 81557954 T^{2} + p^{12} T^{4} \)
23$C_2^2$ \( 1 + 8747422 T^{2} + p^{12} T^{4} \)
29$C_2$ \( ( 1 - 11550 T + p^{6} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 1702033490 T^{2} + p^{12} T^{4} \)
37$C_2$ \( ( 1 - 22346 T + p^{6} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 103626 T + p^{6} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 3585198814 T^{2} + p^{12} T^{4} \)
47$C_2^2$ \( 1 + 4308279550 T^{2} + p^{12} T^{4} \)
53$C_2$ \( ( 1 - 168462 T + p^{6} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 20657330 p^{2} T^{2} + p^{12} T^{4} \)
61$C_2$ \( ( 1 + 70 p^{2} T + p^{6} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 80375086466 T^{2} + p^{12} T^{4} \)
71$C_2^2$ \( 1 + 245662064350 T^{2} + p^{12} T^{4} \)
73$C_2$ \( ( 1 + 395918 T + p^{6} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 176211604754 T^{2} + p^{12} T^{4} \)
83$C_2^2$ \( 1 - 645933881666 T^{2} + p^{12} T^{4} \)
89$C_2$ \( ( 1 + 251886 T + p^{6} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 517474 T + p^{6} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.10830395803282621320207669080, −13.85127807765206180937990588976, −13.81306630991808129319686103627, −12.87614252940234737151589214137, −12.45493350383591380837356290411, −11.62780400857951881692957118588, −11.38137728038245121524701519841, −10.42413192457682826110629185955, −9.974065668017492652069422815849, −9.036925433463367198350428249143, −8.923577798764588973130695718964, −7.53416741076928938452062661581, −7.45021523197529570861112552693, −6.37188631452682379179796338036, −5.72358008288561230392697284984, −4.53683903949108683116077454354, −4.30485432199147628607100982584, −2.44613130536843901296785577287, −2.35199887468584721278530252211, −0.39503320868233161377919572993, 0.39503320868233161377919572993, 2.35199887468584721278530252211, 2.44613130536843901296785577287, 4.30485432199147628607100982584, 4.53683903949108683116077454354, 5.72358008288561230392697284984, 6.37188631452682379179796338036, 7.45021523197529570861112552693, 7.53416741076928938452062661581, 8.923577798764588973130695718964, 9.036925433463367198350428249143, 9.974065668017492652069422815849, 10.42413192457682826110629185955, 11.38137728038245121524701519841, 11.62780400857951881692957118588, 12.45493350383591380837356290411, 12.87614252940234737151589214137, 13.81306630991808129319686103627, 13.85127807765206180937990588976, 15.10830395803282621320207669080

Graph of the $Z$-function along the critical line