Properties

Label 8-48e4-1.1-c5e4-0-0
Degree $8$
Conductor $5308416$
Sign $1$
Analytic cond. $3512.42$
Root an. cond. $2.77460$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 186·9-s + 3.25e3·13-s + 8.46e3·25-s − 6.37e3·37-s + 6.43e4·49-s + 9.54e4·61-s + 7.03e4·73-s − 2.44e4·81-s − 1.96e5·97-s − 5.62e5·109-s + 6.05e5·117-s − 5.15e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.14e6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 0.765·9-s + 5.34·13-s + 2.70·25-s − 0.765·37-s + 3.82·49-s + 3.28·61-s + 1.54·73-s − 0.414·81-s − 2.11·97-s − 4.53·109-s + 4.09·117-s − 0.319·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 13.8·169-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + 1.98e−6·191-s + 1.93e−6·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(3512.42\)
Root analytic conductor: \(2.77460\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5308416,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(7.191091707\)
\(L(\frac12)\) \(\approx\) \(7.191091707\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 62 p T^{2} + p^{10} T^{4} \)
good5$C_2^2$ \( ( 1 - 4234 T^{2} + p^{10} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 32162 T^{2} + p^{10} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 25750 T^{2} + p^{10} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 814 T + p^{5} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 1063262 T^{2} + p^{10} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 4950746 T^{2} + p^{10} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 10913134 T^{2} + p^{10} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 11506042 T^{2} + p^{10} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 51390670 T^{2} + p^{10} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 1594 T + p^{5} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 152677138 T^{2} + p^{10} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 212459498 T^{2} + p^{10} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 186868702 T^{2} + p^{10} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 465364330 T^{2} + p^{10} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 654104714 T^{2} + p^{10} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 23870 T + p^{5} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 1776663866 T^{2} + p^{10} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 2531406670 T^{2} + p^{10} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 17578 T + p^{5} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 6103337810 T^{2} + p^{10} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 7613898598 T^{2} + p^{10} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 3344224498 T^{2} + p^{10} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 49070 T + p^{5} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78772308146863531090453958744, −10.35186458525617025511995313036, −10.30598976467433910681421463368, −9.641572493361603677967196774603, −9.194806836083580873597135303285, −8.757973595306703711585838094630, −8.754173856698912193403029870706, −8.434703029935748316592360258113, −8.267134586331697642071657745275, −7.70713941062885028853885377587, −6.99185421639082582739350543221, −6.82509346594668318358843787237, −6.65584359787269791099288835163, −6.05960487596838311017661844456, −5.86968621551603737201866094265, −5.33811882272077207077625118109, −5.04383940263279580876762042407, −3.94754323134692544541969154430, −3.89586078918740177900650871858, −3.89270305873138975659442557744, −3.07177550379763901673704327626, −2.44091914934268270490977443589, −1.41482110293227740910872288535, −1.04824361104573351254038520337, −0.935959272208809740344281422815, 0.935959272208809740344281422815, 1.04824361104573351254038520337, 1.41482110293227740910872288535, 2.44091914934268270490977443589, 3.07177550379763901673704327626, 3.89270305873138975659442557744, 3.89586078918740177900650871858, 3.94754323134692544541969154430, 5.04383940263279580876762042407, 5.33811882272077207077625118109, 5.86968621551603737201866094265, 6.05960487596838311017661844456, 6.65584359787269791099288835163, 6.82509346594668318358843787237, 6.99185421639082582739350543221, 7.70713941062885028853885377587, 8.267134586331697642071657745275, 8.434703029935748316592360258113, 8.754173856698912193403029870706, 8.757973595306703711585838094630, 9.194806836083580873597135303285, 9.641572493361603677967196774603, 10.30598976467433910681421463368, 10.35186458525617025511995313036, 10.78772308146863531090453958744

Graph of the $Z$-function along the critical line