Properties

Label 8-48e4-1.1-c3e4-0-0
Degree $8$
Conductor $5308416$
Sign $1$
Analytic cond. $64.3323$
Root an. cond. $1.68288$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 42·9-s − 104·13-s − 76·25-s + 824·37-s + 772·49-s + 1.11e3·61-s − 1.68e3·73-s + 1.03e3·81-s − 4.28e3·97-s + 1.43e3·109-s − 4.36e3·117-s − 3.59e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2.02e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 14/9·9-s − 2.21·13-s − 0.607·25-s + 3.66·37-s + 2.25·49-s + 2.33·61-s − 2.70·73-s + 1.41·81-s − 4.48·97-s + 1.25·109-s − 3.45·117-s − 2.70·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s − 0.923·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(64.3323\)
Root analytic conductor: \(1.68288\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5308416,\ (\ :3/2, 3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.028356504\)
\(L(\frac12)\) \(\approx\) \(2.028356504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 14 p T^{2} + p^{6} T^{4} \)
good5$C_2^2$ \( ( 1 + 38 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 386 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 1798 T^{2} + p^{6} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 2 p T + p^{3} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 5218 T^{2} + p^{6} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 2186 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 6770 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 48490 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 58610 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 206 T + p^{3} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 44530 T^{2} + p^{6} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 150266 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 193822 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 295162 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 98854 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 278 T + p^{3} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 191062 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 712366 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 422 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 539090 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 1142710 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 1270546 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 1070 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28145290676356599116562575691, −10.92304465276536632813241087427, −10.38761988252446993438826674431, −10.16118561804820831902803443080, −9.832731730861270285636002974219, −9.773743803575971176829387282759, −9.462328934448477676119150971924, −8.848649501376301939389858614993, −8.807879861310938851042297872416, −7.981597473804520481216973455153, −7.69356401754218641905827460137, −7.65139944315157107934638018104, −7.19896939401082726898044586355, −6.77038550770534651089334425737, −6.56625715956571960629456174105, −5.92053759936660615603833744957, −5.35544127540697472462002138247, −5.28333118641000321052146491692, −4.39581365844079065872555497017, −4.17134027108114254946896496833, −4.10409578895279394935748584838, −2.72010089401387602088294765869, −2.67978124865639315022734160496, −1.75494584468707602712319511577, −0.71455361788510868503819984830, 0.71455361788510868503819984830, 1.75494584468707602712319511577, 2.67978124865639315022734160496, 2.72010089401387602088294765869, 4.10409578895279394935748584838, 4.17134027108114254946896496833, 4.39581365844079065872555497017, 5.28333118641000321052146491692, 5.35544127540697472462002138247, 5.92053759936660615603833744957, 6.56625715956571960629456174105, 6.77038550770534651089334425737, 7.19896939401082726898044586355, 7.65139944315157107934638018104, 7.69356401754218641905827460137, 7.981597473804520481216973455153, 8.807879861310938851042297872416, 8.848649501376301939389858614993, 9.462328934448477676119150971924, 9.773743803575971176829387282759, 9.832731730861270285636002974219, 10.16118561804820831902803443080, 10.38761988252446993438826674431, 10.92304465276536632813241087427, 11.28145290676356599116562575691

Graph of the $Z$-function along the critical line