Properties

Label 4-48e2-1.1-c2e2-0-0
Degree $4$
Conductor $2304$
Sign $1$
Analytic cond. $1.71061$
Root an. cond. $1.14363$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 12·7-s − 5·9-s + 20·13-s − 4·19-s − 24·21-s + 18·25-s + 28·27-s + 44·31-s − 12·37-s − 40·39-s − 164·43-s + 10·49-s + 8·57-s − 172·61-s − 60·63-s − 4·67-s + 164·73-s − 36·75-s − 20·79-s − 11·81-s + 240·91-s − 88·93-s − 188·97-s + 268·103-s + 20·109-s + 24·111-s + ⋯
L(s)  = 1  − 2/3·3-s + 12/7·7-s − 5/9·9-s + 1.53·13-s − 0.210·19-s − 8/7·21-s + 0.719·25-s + 1.03·27-s + 1.41·31-s − 0.324·37-s − 1.02·39-s − 3.81·43-s + 0.204·49-s + 8/57·57-s − 2.81·61-s − 0.952·63-s − 0.0597·67-s + 2.24·73-s − 0.479·75-s − 0.253·79-s − 0.135·81-s + 2.63·91-s − 0.946·93-s − 1.93·97-s + 2.60·103-s + 0.183·109-s + 8/37·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(1.71061\)
Root analytic conductor: \(1.14363\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2304,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.129357969\)
\(L(\frac12)\) \(\approx\) \(1.129357969\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p^{2} T^{2} \)
good5$C_2^2$ \( 1 - 18 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 210 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 66 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 930 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 1394 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2210 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 82 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 190 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 1746 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 1554 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 86 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 5406 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 8370 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14690 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 94 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.57043223853227462553880449452, −15.18205616010965058745776826752, −14.63570113284640684849674349504, −13.80983076217042636039033038115, −13.74779223154144646161891469990, −12.79875184868878539502629179602, −11.97297937000266713434486219270, −11.59147277940091212263005169755, −11.06628828728236644478383214993, −10.69952286346587240119431300380, −9.903901932416096870875403707062, −8.733397303057901341913019031213, −8.409602321260687544304099349977, −7.898390187659691057364673114554, −6.66243153714466825535656970955, −6.15665602481661924731916389292, −5.10001899190853530745711742341, −4.69649591590057934138421818576, −3.29890576054193911342403457106, −1.51516477393485154652426285439, 1.51516477393485154652426285439, 3.29890576054193911342403457106, 4.69649591590057934138421818576, 5.10001899190853530745711742341, 6.15665602481661924731916389292, 6.66243153714466825535656970955, 7.898390187659691057364673114554, 8.409602321260687544304099349977, 8.733397303057901341913019031213, 9.903901932416096870875403707062, 10.69952286346587240119431300380, 11.06628828728236644478383214993, 11.59147277940091212263005169755, 11.97297937000266713434486219270, 12.79875184868878539502629179602, 13.74779223154144646161891469990, 13.80983076217042636039033038115, 14.63570113284640684849674349504, 15.18205616010965058745776826752, 15.57043223853227462553880449452

Graph of the $Z$-function along the critical line