Properties

Label 8-48e4-1.1-c10e4-0-2
Degree $8$
Conductor $5308416$
Sign $1$
Analytic cond. $865041.$
Root an. cond. $5.52242$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 84·3-s + 4.51e4·7-s + 8.30e4·9-s + 2.75e5·13-s + 1.56e6·19-s − 3.78e6·21-s + 2.66e6·25-s − 1.83e7·27-s + 2.17e7·31-s − 7.10e7·37-s − 2.31e7·39-s + 4.70e8·43-s + 4.27e8·49-s − 1.31e8·57-s − 1.18e9·61-s + 3.74e9·63-s + 2.97e8·67-s + 6.53e9·73-s − 2.23e8·75-s − 1.99e8·79-s + 4.77e9·81-s + 1.24e10·91-s − 1.83e9·93-s − 3.91e10·97-s − 1.10e10·103-s − 2.03e10·109-s + 5.96e9·111-s + ⋯
L(s)  = 1  − 0.345·3-s + 2.68·7-s + 1.40·9-s + 0.741·13-s + 0.633·19-s − 0.927·21-s + 0.272·25-s − 1.27·27-s + 0.760·31-s − 1.02·37-s − 0.256·39-s + 3.20·43-s + 1.51·49-s − 0.219·57-s − 1.40·61-s + 3.77·63-s + 0.220·67-s + 3.15·73-s − 0.0943·75-s − 0.0647·79-s + 1.37·81-s + 1.98·91-s − 0.263·93-s − 4.56·97-s − 0.954·103-s − 1.32·109-s + 0.354·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+5)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(865041.\)
Root analytic conductor: \(5.52242\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5308416,\ (\ :5, 5, 5, 5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(6.911571071\)
\(L(\frac12)\) \(\approx\) \(6.911571071\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 28 p T - 938 p^{4} T^{2} + 28 p^{11} T^{3} + p^{20} T^{4} \)
good5$D_4\times C_2$ \( 1 - 533012 p T^{2} + 6693053487126 p^{2} T^{4} - 533012 p^{21} T^{6} + p^{40} T^{8} \)
7$D_{4}$ \( ( 1 - 22556 T + 78482346 p T^{2} - 22556 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 4130589740 p T^{2} + \)\(12\!\cdots\!02\)\( T^{4} - 4130589740 p^{21} T^{6} + p^{40} T^{8} \)
13$D_{4}$ \( ( 1 - 137620 T + 223344855798 T^{2} - 137620 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 503008419460 T^{2} - \)\(28\!\cdots\!38\)\( T^{4} - 503008419460 p^{20} T^{6} + p^{40} T^{8} \)
19$D_{4}$ \( ( 1 - 784364 T + 11072641146486 T^{2} - 784364 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 132650537376580 T^{2} + \)\(14\!\cdots\!78\)\( p^{2} T^{4} - 132650537376580 p^{20} T^{6} + p^{40} T^{8} \)
29$D_4\times C_2$ \( 1 - 775524833463844 T^{2} + \)\(31\!\cdots\!86\)\( T^{4} - 775524833463844 p^{20} T^{6} + p^{40} T^{8} \)
31$D_{4}$ \( ( 1 - 10892924 T + 345177991175046 T^{2} - 10892924 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 35507084 T + 5319849690001302 T^{2} + 35507084 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 30129232679351620 T^{2} + \)\(47\!\cdots\!42\)\( T^{4} - 30129232679351620 p^{20} T^{6} + p^{40} T^{8} \)
43$D_{4}$ \( ( 1 - 5473124 p T + 50501107105165014 T^{2} - 5473124 p^{11} T^{3} + p^{20} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 185271765343089796 T^{2} + \)\(13\!\cdots\!06\)\( T^{4} - 185271765343089796 p^{20} T^{6} + p^{40} T^{8} \)
53$D_4\times C_2$ \( 1 - 486913415004520420 T^{2} + \)\(10\!\cdots\!62\)\( T^{4} - 486913415004520420 p^{20} T^{6} + p^{40} T^{8} \)
59$D_4\times C_2$ \( 1 - 1720402455795118180 T^{2} + \)\(12\!\cdots\!62\)\( T^{4} - 1720402455795118180 p^{20} T^{6} + p^{40} T^{8} \)
61$D_{4}$ \( ( 1 + 592019372 T + 1459215526973846838 T^{2} + 592019372 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 148682924 T + 3295467847639477302 T^{2} - 148682924 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 11173485987747195844 T^{2} + \)\(52\!\cdots\!86\)\( T^{4} - 11173485987747195844 p^{20} T^{6} + p^{40} T^{8} \)
73$D_{4}$ \( ( 1 - 3267134500 T + 10958748572669742438 T^{2} - 3267134500 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 99641284 T + 15267587176773126726 T^{2} + 99641284 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 56087025146752445092 T^{2} + \)\(12\!\cdots\!58\)\( T^{4} - 56087025146752445092 p^{20} T^{6} + p^{40} T^{8} \)
89$D_4\times C_2$ \( 1 - 97642754408129363140 T^{2} + \)\(41\!\cdots\!62\)\( T^{4} - 97642754408129363140 p^{20} T^{6} + p^{40} T^{8} \)
97$D_{4}$ \( ( 1 + 19588177532 T + \)\(24\!\cdots\!94\)\( T^{2} + 19588177532 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.472846530740962931508311947544, −9.207839768619646266192735415022, −8.573685064173059397470926279384, −8.402714793225725746142988820001, −8.144580555360930798967396342517, −7.61621295251844831608711711442, −7.56583269676154654047569938387, −7.35088189872933118606006833507, −6.72149989596327304784046718030, −6.30541573102605911872587130057, −6.18125350502726194287450708420, −5.26422637021701204908097444325, −5.26350446563490129896014607466, −5.12788621826835726124693490939, −4.45109609705176941211543384423, −4.23399236582004066704141522009, −3.92310508450966843554732229668, −3.52602189511198974885081984372, −2.63401499170346589744028010827, −2.50109645652302692062248814703, −1.73057288880771767552257724014, −1.51502308893242200633719031819, −1.27582901930568280889361648610, −0.953873223108240585981725642596, −0.33800691113948967619830486248, 0.33800691113948967619830486248, 0.953873223108240585981725642596, 1.27582901930568280889361648610, 1.51502308893242200633719031819, 1.73057288880771767552257724014, 2.50109645652302692062248814703, 2.63401499170346589744028010827, 3.52602189511198974885081984372, 3.92310508450966843554732229668, 4.23399236582004066704141522009, 4.45109609705176941211543384423, 5.12788621826835726124693490939, 5.26350446563490129896014607466, 5.26422637021701204908097444325, 6.18125350502726194287450708420, 6.30541573102605911872587130057, 6.72149989596327304784046718030, 7.35088189872933118606006833507, 7.56583269676154654047569938387, 7.61621295251844831608711711442, 8.144580555360930798967396342517, 8.402714793225725746142988820001, 8.573685064173059397470926279384, 9.207839768619646266192735415022, 9.472846530740962931508311947544

Graph of the $Z$-function along the critical line