Properties

Label 2-471-1.1-c7-0-40
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.8·2-s − 27·3-s + 155.·4-s + 189.·5-s + 454.·6-s + 904.·7-s − 469.·8-s + 729·9-s − 3.18e3·10-s − 4.29e3·11-s − 4.20e3·12-s + 1.02e3·13-s − 1.52e4·14-s − 5.10e3·15-s − 1.20e4·16-s + 1.81e4·17-s − 1.22e4·18-s − 2.36e4·19-s + 2.94e4·20-s − 2.44e4·21-s + 7.23e4·22-s − 7.59e4·23-s + 1.26e4·24-s − 4.23e4·25-s − 1.73e4·26-s − 1.96e4·27-s + 1.40e5·28-s + ⋯
L(s)  = 1  − 1.48·2-s − 0.577·3-s + 1.21·4-s + 0.676·5-s + 0.859·6-s + 0.996·7-s − 0.324·8-s + 0.333·9-s − 1.00·10-s − 0.973·11-s − 0.703·12-s + 0.129·13-s − 1.48·14-s − 0.390·15-s − 0.734·16-s + 0.894·17-s − 0.496·18-s − 0.790·19-s + 0.823·20-s − 0.575·21-s + 1.44·22-s − 1.30·23-s + 0.187·24-s − 0.542·25-s − 0.193·26-s − 0.192·27-s + 1.21·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.8034841557\)
\(L(\frac12)\) \(\approx\) \(0.8034841557\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 + 16.8T + 128T^{2} \)
5 \( 1 - 189.T + 7.81e4T^{2} \)
7 \( 1 - 904.T + 8.23e5T^{2} \)
11 \( 1 + 4.29e3T + 1.94e7T^{2} \)
13 \( 1 - 1.02e3T + 6.27e7T^{2} \)
17 \( 1 - 1.81e4T + 4.10e8T^{2} \)
19 \( 1 + 2.36e4T + 8.93e8T^{2} \)
23 \( 1 + 7.59e4T + 3.40e9T^{2} \)
29 \( 1 + 8.85e4T + 1.72e10T^{2} \)
31 \( 1 - 4.43e4T + 2.75e10T^{2} \)
37 \( 1 - 2.12e5T + 9.49e10T^{2} \)
41 \( 1 - 5.95e5T + 1.94e11T^{2} \)
43 \( 1 + 3.19e5T + 2.71e11T^{2} \)
47 \( 1 - 9.94e5T + 5.06e11T^{2} \)
53 \( 1 - 3.15e5T + 1.17e12T^{2} \)
59 \( 1 + 1.74e6T + 2.48e12T^{2} \)
61 \( 1 - 2.17e6T + 3.14e12T^{2} \)
67 \( 1 + 2.98e6T + 6.06e12T^{2} \)
71 \( 1 + 4.54e6T + 9.09e12T^{2} \)
73 \( 1 - 5.25e6T + 1.10e13T^{2} \)
79 \( 1 + 2.03e6T + 1.92e13T^{2} \)
83 \( 1 - 6.94e6T + 2.71e13T^{2} \)
89 \( 1 - 7.77e6T + 4.42e13T^{2} \)
97 \( 1 + 1.30e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.972789817015685054640231042108, −9.042402689302459556522906147621, −7.947478645363299165558011362329, −7.63894690612511325765789949856, −6.24190951930968080860883023406, −5.43116350296905605993217854629, −4.28049712399685421673436143311, −2.34132848185945675934454446510, −1.59902825502646208934072742572, −0.53059428263950929222264086193, 0.53059428263950929222264086193, 1.59902825502646208934072742572, 2.34132848185945675934454446510, 4.28049712399685421673436143311, 5.43116350296905605993217854629, 6.24190951930968080860883023406, 7.63894690612511325765789949856, 7.947478645363299165558011362329, 9.042402689302459556522906147621, 9.972789817015685054640231042108

Graph of the $Z$-function along the critical line