Properties

Label 2-471-1.1-c7-0-61
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.2·2-s − 27·3-s + 104.·4-s + 244.·5-s − 411.·6-s − 1.05e3·7-s − 358.·8-s + 729·9-s + 3.73e3·10-s − 3.06e3·11-s − 2.82e3·12-s + 1.45e4·13-s − 1.60e4·14-s − 6.60e3·15-s − 1.88e4·16-s + 3.66e4·17-s + 1.11e4·18-s − 3.21e4·19-s + 2.55e4·20-s + 2.83e4·21-s − 4.68e4·22-s − 7.83e4·23-s + 9.68e3·24-s − 1.82e4·25-s + 2.21e5·26-s − 1.96e4·27-s − 1.09e5·28-s + ⋯
L(s)  = 1  + 1.34·2-s − 0.577·3-s + 0.816·4-s + 0.875·5-s − 0.778·6-s − 1.15·7-s − 0.247·8-s + 0.333·9-s + 1.18·10-s − 0.695·11-s − 0.471·12-s + 1.83·13-s − 1.56·14-s − 0.505·15-s − 1.14·16-s + 1.81·17-s + 0.449·18-s − 1.07·19-s + 0.714·20-s + 0.668·21-s − 0.937·22-s − 1.34·23-s + 0.142·24-s − 0.232·25-s + 2.46·26-s − 0.192·27-s − 0.945·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.645588293\)
\(L(\frac12)\) \(\approx\) \(3.645588293\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 - 15.2T + 128T^{2} \)
5 \( 1 - 244.T + 7.81e4T^{2} \)
7 \( 1 + 1.05e3T + 8.23e5T^{2} \)
11 \( 1 + 3.06e3T + 1.94e7T^{2} \)
13 \( 1 - 1.45e4T + 6.27e7T^{2} \)
17 \( 1 - 3.66e4T + 4.10e8T^{2} \)
19 \( 1 + 3.21e4T + 8.93e8T^{2} \)
23 \( 1 + 7.83e4T + 3.40e9T^{2} \)
29 \( 1 + 3.80e4T + 1.72e10T^{2} \)
31 \( 1 - 1.26e5T + 2.75e10T^{2} \)
37 \( 1 - 5.57e4T + 9.49e10T^{2} \)
41 \( 1 - 3.65e5T + 1.94e11T^{2} \)
43 \( 1 - 7.16e5T + 2.71e11T^{2} \)
47 \( 1 + 2.41e5T + 5.06e11T^{2} \)
53 \( 1 - 1.42e6T + 1.17e12T^{2} \)
59 \( 1 - 3.29e5T + 2.48e12T^{2} \)
61 \( 1 + 2.04e6T + 3.14e12T^{2} \)
67 \( 1 - 5.60e4T + 6.06e12T^{2} \)
71 \( 1 - 2.75e6T + 9.09e12T^{2} \)
73 \( 1 - 6.79e5T + 1.10e13T^{2} \)
79 \( 1 - 5.14e6T + 1.92e13T^{2} \)
83 \( 1 - 5.89e6T + 2.71e13T^{2} \)
89 \( 1 - 9.32e6T + 4.42e13T^{2} \)
97 \( 1 - 1.52e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08084828650847020596743353215, −9.176071764024812400286276609910, −7.88168873020656913107017030342, −6.27127737009724636467539409302, −6.13017340856705384986189473544, −5.41875232684296282739571832662, −4.07112354869979428545819541488, −3.34943815044578572817674126700, −2.17362773462488591491002237100, −0.70001953838604229896628547731, 0.70001953838604229896628547731, 2.17362773462488591491002237100, 3.34943815044578572817674126700, 4.07112354869979428545819541488, 5.41875232684296282739571832662, 6.13017340856705384986189473544, 6.27127737009724636467539409302, 7.88168873020656913107017030342, 9.176071764024812400286276609910, 10.08084828650847020596743353215

Graph of the $Z$-function along the critical line