Properties

Label 2-471-1.1-c7-0-22
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.63·2-s − 27·3-s − 35.2·4-s − 113.·5-s − 260.·6-s + 255.·7-s − 1.57e3·8-s + 729·9-s − 1.09e3·10-s − 1.53e3·11-s + 952.·12-s − 3.40e3·13-s + 2.46e3·14-s + 3.05e3·15-s − 1.06e4·16-s − 3.36e4·17-s + 7.02e3·18-s + 5.58e4·19-s + 3.99e3·20-s − 6.89e3·21-s − 1.47e4·22-s − 3.29e4·23-s + 4.24e4·24-s − 6.52e4·25-s − 3.28e4·26-s − 1.96e4·27-s − 9.00e3·28-s + ⋯
L(s)  = 1  + 0.851·2-s − 0.577·3-s − 0.275·4-s − 0.405·5-s − 0.491·6-s + 0.281·7-s − 1.08·8-s + 0.333·9-s − 0.345·10-s − 0.346·11-s + 0.159·12-s − 0.430·13-s + 0.239·14-s + 0.234·15-s − 0.648·16-s − 1.66·17-s + 0.283·18-s + 1.86·19-s + 0.111·20-s − 0.162·21-s − 0.295·22-s − 0.564·23-s + 0.626·24-s − 0.835·25-s − 0.366·26-s − 0.192·27-s − 0.0775·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.8657984923\)
\(L(\frac12)\) \(\approx\) \(0.8657984923\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 - 9.63T + 128T^{2} \)
5 \( 1 + 113.T + 7.81e4T^{2} \)
7 \( 1 - 255.T + 8.23e5T^{2} \)
11 \( 1 + 1.53e3T + 1.94e7T^{2} \)
13 \( 1 + 3.40e3T + 6.27e7T^{2} \)
17 \( 1 + 3.36e4T + 4.10e8T^{2} \)
19 \( 1 - 5.58e4T + 8.93e8T^{2} \)
23 \( 1 + 3.29e4T + 3.40e9T^{2} \)
29 \( 1 + 1.65e5T + 1.72e10T^{2} \)
31 \( 1 + 1.89e5T + 2.75e10T^{2} \)
37 \( 1 + 2.20e5T + 9.49e10T^{2} \)
41 \( 1 - 4.42e5T + 1.94e11T^{2} \)
43 \( 1 + 5.33e4T + 2.71e11T^{2} \)
47 \( 1 + 6.77e5T + 5.06e11T^{2} \)
53 \( 1 - 7.70e5T + 1.17e12T^{2} \)
59 \( 1 - 8.92e5T + 2.48e12T^{2} \)
61 \( 1 + 2.46e6T + 3.14e12T^{2} \)
67 \( 1 - 4.34e6T + 6.06e12T^{2} \)
71 \( 1 + 1.37e6T + 9.09e12T^{2} \)
73 \( 1 - 1.01e6T + 1.10e13T^{2} \)
79 \( 1 + 2.91e6T + 1.92e13T^{2} \)
83 \( 1 - 4.04e6T + 2.71e13T^{2} \)
89 \( 1 + 4.98e6T + 4.42e13T^{2} \)
97 \( 1 + 9.99e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.820697980187075006985504208779, −9.096740425006271269419620549128, −7.897228566910199274401362635466, −7.00708947891107491464794368524, −5.80650606976564936196561450146, −5.13657032142608941317668799781, −4.26927811355944630079083618887, −3.37176376348506086246727482875, −1.98428438995507020921209694725, −0.36080396277871294686930346434, 0.36080396277871294686930346434, 1.98428438995507020921209694725, 3.37176376348506086246727482875, 4.26927811355944630079083618887, 5.13657032142608941317668799781, 5.80650606976564936196561450146, 7.00708947891107491464794368524, 7.897228566910199274401362635466, 9.096740425006271269419620549128, 9.820697980187075006985504208779

Graph of the $Z$-function along the critical line