Properties

Label 2-471-1.1-c7-0-4
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.48·2-s − 27·3-s − 97.8·4-s − 94.0·5-s − 148.·6-s − 955.·7-s − 1.23e3·8-s + 729·9-s − 515.·10-s + 1.69e3·11-s + 2.64e3·12-s + 9.55e3·13-s − 5.24e3·14-s + 2.53e3·15-s + 5.73e3·16-s − 2.75e4·17-s + 3.99e3·18-s − 4.35e4·19-s + 9.20e3·20-s + 2.58e4·21-s + 9.29e3·22-s − 2.31e4·23-s + 3.34e4·24-s − 6.92e4·25-s + 5.24e4·26-s − 1.96e4·27-s + 9.35e4·28-s + ⋯
L(s)  = 1  + 0.484·2-s − 0.577·3-s − 0.764·4-s − 0.336·5-s − 0.279·6-s − 1.05·7-s − 0.855·8-s + 0.333·9-s − 0.163·10-s + 0.383·11-s + 0.441·12-s + 1.20·13-s − 0.510·14-s + 0.194·15-s + 0.349·16-s − 1.36·17-s + 0.161·18-s − 1.45·19-s + 0.257·20-s + 0.608·21-s + 0.186·22-s − 0.397·23-s + 0.494·24-s − 0.886·25-s + 0.584·26-s − 0.192·27-s + 0.805·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.04759963320\)
\(L(\frac12)\) \(\approx\) \(0.04759963320\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 - 5.48T + 128T^{2} \)
5 \( 1 + 94.0T + 7.81e4T^{2} \)
7 \( 1 + 955.T + 8.23e5T^{2} \)
11 \( 1 - 1.69e3T + 1.94e7T^{2} \)
13 \( 1 - 9.55e3T + 6.27e7T^{2} \)
17 \( 1 + 2.75e4T + 4.10e8T^{2} \)
19 \( 1 + 4.35e4T + 8.93e8T^{2} \)
23 \( 1 + 2.31e4T + 3.40e9T^{2} \)
29 \( 1 + 1.81e5T + 1.72e10T^{2} \)
31 \( 1 + 1.22e5T + 2.75e10T^{2} \)
37 \( 1 + 1.82e5T + 9.49e10T^{2} \)
41 \( 1 + 5.47e5T + 1.94e11T^{2} \)
43 \( 1 + 9.67e5T + 2.71e11T^{2} \)
47 \( 1 + 3.78e5T + 5.06e11T^{2} \)
53 \( 1 + 7.68e5T + 1.17e12T^{2} \)
59 \( 1 - 1.84e6T + 2.48e12T^{2} \)
61 \( 1 + 1.50e6T + 3.14e12T^{2} \)
67 \( 1 + 1.06e6T + 6.06e12T^{2} \)
71 \( 1 - 4.89e6T + 9.09e12T^{2} \)
73 \( 1 - 2.05e6T + 1.10e13T^{2} \)
79 \( 1 - 8.44e6T + 1.92e13T^{2} \)
83 \( 1 + 4.02e6T + 2.71e13T^{2} \)
89 \( 1 + 3.58e6T + 4.42e13T^{2} \)
97 \( 1 - 1.60e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.827266505653045099327503198771, −8.996717093278274414766949500845, −8.236828596705678415797809010402, −6.64547948404834685731959366198, −6.24390815530785491997295969519, −5.13085645879575621558059042641, −3.96320389589706012457498132858, −3.57579090034972680716408432935, −1.82156361728792112543153158394, −0.090190935413607673685379965548, 0.090190935413607673685379965548, 1.82156361728792112543153158394, 3.57579090034972680716408432935, 3.96320389589706012457498132858, 5.13085645879575621558059042641, 6.24390815530785491997295969519, 6.64547948404834685731959366198, 8.236828596705678415797809010402, 8.996717093278274414766949500845, 9.827266505653045099327503198771

Graph of the $Z$-function along the critical line