Properties

Label 2-471-1.1-c7-0-28
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20.6·2-s − 27·3-s + 297.·4-s + 165.·5-s + 556.·6-s − 1.38e3·7-s − 3.48e3·8-s + 729·9-s − 3.41e3·10-s + 2.50e3·11-s − 8.02e3·12-s + 5.80e3·13-s + 2.85e4·14-s − 4.46e3·15-s + 3.38e4·16-s − 1.30e4·17-s − 1.50e4·18-s + 1.23e4·19-s + 4.91e4·20-s + 3.74e4·21-s − 5.15e4·22-s − 8.09e4·23-s + 9.41e4·24-s − 5.07e4·25-s − 1.19e5·26-s − 1.96e4·27-s − 4.11e5·28-s + ⋯
L(s)  = 1  − 1.82·2-s − 0.577·3-s + 2.32·4-s + 0.591·5-s + 1.05·6-s − 1.52·7-s − 2.40·8-s + 0.333·9-s − 1.07·10-s + 0.566·11-s − 1.34·12-s + 0.733·13-s + 2.78·14-s − 0.341·15-s + 2.06·16-s − 0.643·17-s − 0.607·18-s + 0.411·19-s + 1.37·20-s + 0.881·21-s − 1.03·22-s − 1.38·23-s + 1.39·24-s − 0.649·25-s − 1.33·26-s − 0.192·27-s − 3.54·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.4133204550\)
\(L(\frac12)\) \(\approx\) \(0.4133204550\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 + 20.6T + 128T^{2} \)
5 \( 1 - 165.T + 7.81e4T^{2} \)
7 \( 1 + 1.38e3T + 8.23e5T^{2} \)
11 \( 1 - 2.50e3T + 1.94e7T^{2} \)
13 \( 1 - 5.80e3T + 6.27e7T^{2} \)
17 \( 1 + 1.30e4T + 4.10e8T^{2} \)
19 \( 1 - 1.23e4T + 8.93e8T^{2} \)
23 \( 1 + 8.09e4T + 3.40e9T^{2} \)
29 \( 1 + 5.82e4T + 1.72e10T^{2} \)
31 \( 1 - 1.27e5T + 2.75e10T^{2} \)
37 \( 1 + 1.08e5T + 9.49e10T^{2} \)
41 \( 1 - 6.87e5T + 1.94e11T^{2} \)
43 \( 1 - 8.85e4T + 2.71e11T^{2} \)
47 \( 1 + 2.21e5T + 5.06e11T^{2} \)
53 \( 1 + 6.92e5T + 1.17e12T^{2} \)
59 \( 1 - 1.90e6T + 2.48e12T^{2} \)
61 \( 1 + 1.18e6T + 3.14e12T^{2} \)
67 \( 1 + 2.02e5T + 6.06e12T^{2} \)
71 \( 1 - 3.02e6T + 9.09e12T^{2} \)
73 \( 1 - 1.19e5T + 1.10e13T^{2} \)
79 \( 1 + 3.94e6T + 1.92e13T^{2} \)
83 \( 1 + 3.45e6T + 2.71e13T^{2} \)
89 \( 1 - 1.09e6T + 4.42e13T^{2} \)
97 \( 1 + 2.05e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.683816509420839359790959530559, −9.316002271557741409380045154131, −8.255512129171052690158166617033, −7.14237315806729154364517809354, −6.31045043345200924979342282923, −5.93312411318573097391539038540, −3.85164000840109341409272447614, −2.53030016280472325623203672960, −1.45100358778974055579294906905, −0.40370665431017643446882398211, 0.40370665431017643446882398211, 1.45100358778974055579294906905, 2.53030016280472325623203672960, 3.85164000840109341409272447614, 5.93312411318573097391539038540, 6.31045043345200924979342282923, 7.14237315806729154364517809354, 8.255512129171052690158166617033, 9.316002271557741409380045154131, 9.683816509420839359790959530559

Graph of the $Z$-function along the critical line