Properties

Label 2-471-1.1-c7-0-49
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.12·2-s − 27·3-s − 126.·4-s − 79.7·5-s + 30.5·6-s + 71.6·7-s + 287.·8-s + 729·9-s + 90.0·10-s + 3.46e3·11-s + 3.42e3·12-s + 6.67e3·13-s − 80.9·14-s + 2.15e3·15-s + 1.58e4·16-s − 7.50e3·17-s − 823.·18-s + 2.23e4·19-s + 1.01e4·20-s − 1.93e3·21-s − 3.91e3·22-s + 9.09e4·23-s − 7.76e3·24-s − 7.17e4·25-s − 7.53e3·26-s − 1.96e4·27-s − 9.08e3·28-s + ⋯
L(s)  = 1  − 0.0998·2-s − 0.577·3-s − 0.990·4-s − 0.285·5-s + 0.0576·6-s + 0.0790·7-s + 0.198·8-s + 0.333·9-s + 0.0284·10-s + 0.784·11-s + 0.571·12-s + 0.842·13-s − 0.00788·14-s + 0.164·15-s + 0.970·16-s − 0.370·17-s − 0.0332·18-s + 0.749·19-s + 0.282·20-s − 0.0456·21-s − 0.0783·22-s + 1.55·23-s − 0.114·24-s − 0.918·25-s − 0.0841·26-s − 0.192·27-s − 0.0782·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.310919458\)
\(L(\frac12)\) \(\approx\) \(1.310919458\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 + 1.12T + 128T^{2} \)
5 \( 1 + 79.7T + 7.81e4T^{2} \)
7 \( 1 - 71.6T + 8.23e5T^{2} \)
11 \( 1 - 3.46e3T + 1.94e7T^{2} \)
13 \( 1 - 6.67e3T + 6.27e7T^{2} \)
17 \( 1 + 7.50e3T + 4.10e8T^{2} \)
19 \( 1 - 2.23e4T + 8.93e8T^{2} \)
23 \( 1 - 9.09e4T + 3.40e9T^{2} \)
29 \( 1 - 4.86e3T + 1.72e10T^{2} \)
31 \( 1 + 5.07e3T + 2.75e10T^{2} \)
37 \( 1 - 2.43e5T + 9.49e10T^{2} \)
41 \( 1 + 4.80e5T + 1.94e11T^{2} \)
43 \( 1 - 6.33e4T + 2.71e11T^{2} \)
47 \( 1 - 1.27e5T + 5.06e11T^{2} \)
53 \( 1 - 1.76e6T + 1.17e12T^{2} \)
59 \( 1 + 2.53e6T + 2.48e12T^{2} \)
61 \( 1 + 1.18e6T + 3.14e12T^{2} \)
67 \( 1 - 1.53e4T + 6.06e12T^{2} \)
71 \( 1 - 1.86e6T + 9.09e12T^{2} \)
73 \( 1 - 4.32e6T + 1.10e13T^{2} \)
79 \( 1 + 4.66e6T + 1.92e13T^{2} \)
83 \( 1 - 6.19e6T + 2.71e13T^{2} \)
89 \( 1 + 1.14e7T + 4.42e13T^{2} \)
97 \( 1 - 7.47e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.729825405196173271942040337254, −9.050233258759920653060926392364, −8.178238971300637520936370863834, −7.12195185623146942601515961179, −6.07254905201293109260893612844, −5.10222674033773489324474416085, −4.21052594653654265275576331153, −3.32121872617276651438007312507, −1.43968171753697867292160057491, −0.59849270788633538446828333360, 0.59849270788633538446828333360, 1.43968171753697867292160057491, 3.32121872617276651438007312507, 4.21052594653654265275576331153, 5.10222674033773489324474416085, 6.07254905201293109260893612844, 7.12195185623146942601515961179, 8.178238971300637520936370863834, 9.050233258759920653060926392364, 9.729825405196173271942040337254

Graph of the $Z$-function along the critical line