Properties

Label 2-471-1.1-c7-0-77
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $147.133$
Root an. cond. $12.1298$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.65·2-s − 27·3-s − 83.7·4-s + 355.·5-s + 179.·6-s − 1.54e3·7-s + 1.40e3·8-s + 729·9-s − 2.36e3·10-s + 7.28e3·11-s + 2.26e3·12-s + 7.54e3·13-s + 1.02e4·14-s − 9.58e3·15-s + 1.35e3·16-s + 2.93e4·17-s − 4.84e3·18-s − 5.07e3·19-s − 2.97e4·20-s + 4.17e4·21-s − 4.84e4·22-s + 6.50e4·23-s − 3.80e4·24-s + 4.79e4·25-s − 5.01e4·26-s − 1.96e4·27-s + 1.29e5·28-s + ⋯
L(s)  = 1  − 0.587·2-s − 0.577·3-s − 0.654·4-s + 1.27·5-s + 0.339·6-s − 1.70·7-s + 0.972·8-s + 0.333·9-s − 0.746·10-s + 1.64·11-s + 0.377·12-s + 0.951·13-s + 1.00·14-s − 0.733·15-s + 0.0828·16-s + 1.45·17-s − 0.195·18-s − 0.169·19-s − 0.831·20-s + 0.983·21-s − 0.969·22-s + 1.11·23-s − 0.561·24-s + 0.614·25-s − 0.559·26-s − 0.192·27-s + 1.11·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(147.133\)
Root analytic conductor: \(12.1298\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.730602776\)
\(L(\frac12)\) \(\approx\) \(1.730602776\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
157 \( 1 + 3.86e6T \)
good2 \( 1 + 6.65T + 128T^{2} \)
5 \( 1 - 355.T + 7.81e4T^{2} \)
7 \( 1 + 1.54e3T + 8.23e5T^{2} \)
11 \( 1 - 7.28e3T + 1.94e7T^{2} \)
13 \( 1 - 7.54e3T + 6.27e7T^{2} \)
17 \( 1 - 2.93e4T + 4.10e8T^{2} \)
19 \( 1 + 5.07e3T + 8.93e8T^{2} \)
23 \( 1 - 6.50e4T + 3.40e9T^{2} \)
29 \( 1 - 2.08e5T + 1.72e10T^{2} \)
31 \( 1 - 2.04e5T + 2.75e10T^{2} \)
37 \( 1 - 3.87e5T + 9.49e10T^{2} \)
41 \( 1 - 1.44e5T + 1.94e11T^{2} \)
43 \( 1 + 5.27e5T + 2.71e11T^{2} \)
47 \( 1 + 1.09e6T + 5.06e11T^{2} \)
53 \( 1 - 4.14e5T + 1.17e12T^{2} \)
59 \( 1 - 1.10e6T + 2.48e12T^{2} \)
61 \( 1 - 3.33e6T + 3.14e12T^{2} \)
67 \( 1 + 2.93e6T + 6.06e12T^{2} \)
71 \( 1 - 4.78e6T + 9.09e12T^{2} \)
73 \( 1 + 1.95e5T + 1.10e13T^{2} \)
79 \( 1 + 2.43e6T + 1.92e13T^{2} \)
83 \( 1 + 6.93e6T + 2.71e13T^{2} \)
89 \( 1 + 1.76e6T + 4.42e13T^{2} \)
97 \( 1 + 1.19e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.873041081108578337481761238366, −9.270396901320723654371916965528, −8.382532768244418305860541530628, −6.72151672505001024786137265069, −6.35800636229612239639654014982, −5.41462886038819156730666282175, −4.09471612987728874356445373715, −3.06134774869288128933433552815, −1.27198247330932576455809915451, −0.814115326587775886956021874113, 0.814115326587775886956021874113, 1.27198247330932576455809915451, 3.06134774869288128933433552815, 4.09471612987728874356445373715, 5.41462886038819156730666282175, 6.35800636229612239639654014982, 6.72151672505001024786137265069, 8.382532768244418305860541530628, 9.270396901320723654371916965528, 9.873041081108578337481761238366

Graph of the $Z$-function along the critical line