Properties

Label 2-471-1.1-c5-0-86
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.49·2-s − 9·3-s + 10.1·4-s + 53.7·5-s + 58.4·6-s − 12.0·7-s + 141.·8-s + 81·9-s − 348.·10-s + 408.·11-s − 91.0·12-s + 189.·13-s + 78.5·14-s − 483.·15-s − 1.24e3·16-s − 1.38e3·17-s − 525.·18-s − 1.11e3·19-s + 543.·20-s + 108.·21-s − 2.65e3·22-s + 514.·23-s − 1.27e3·24-s − 239.·25-s − 1.23e3·26-s − 729·27-s − 122.·28-s + ⋯
L(s)  = 1  − 1.14·2-s − 0.577·3-s + 0.316·4-s + 0.960·5-s + 0.662·6-s − 0.0933·7-s + 0.784·8-s + 0.333·9-s − 1.10·10-s + 1.01·11-s − 0.182·12-s + 0.311·13-s + 0.107·14-s − 0.554·15-s − 1.21·16-s − 1.16·17-s − 0.382·18-s − 0.707·19-s + 0.303·20-s + 0.0538·21-s − 1.16·22-s + 0.202·23-s − 0.452·24-s − 0.0767·25-s − 0.356·26-s − 0.192·27-s − 0.0295·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 + 6.49T + 32T^{2} \)
5 \( 1 - 53.7T + 3.12e3T^{2} \)
7 \( 1 + 12.0T + 1.68e4T^{2} \)
11 \( 1 - 408.T + 1.61e5T^{2} \)
13 \( 1 - 189.T + 3.71e5T^{2} \)
17 \( 1 + 1.38e3T + 1.41e6T^{2} \)
19 \( 1 + 1.11e3T + 2.47e6T^{2} \)
23 \( 1 - 514.T + 6.43e6T^{2} \)
29 \( 1 - 8.45e3T + 2.05e7T^{2} \)
31 \( 1 + 9.63e3T + 2.86e7T^{2} \)
37 \( 1 + 2.49e3T + 6.93e7T^{2} \)
41 \( 1 + 8.73e3T + 1.15e8T^{2} \)
43 \( 1 - 1.16e4T + 1.47e8T^{2} \)
47 \( 1 + 1.06e4T + 2.29e8T^{2} \)
53 \( 1 - 7.88e3T + 4.18e8T^{2} \)
59 \( 1 - 1.81e4T + 7.14e8T^{2} \)
61 \( 1 - 3.43e3T + 8.44e8T^{2} \)
67 \( 1 + 4.99e4T + 1.35e9T^{2} \)
71 \( 1 - 5.10e4T + 1.80e9T^{2} \)
73 \( 1 - 3.75e4T + 2.07e9T^{2} \)
79 \( 1 - 7.43e4T + 3.07e9T^{2} \)
83 \( 1 - 9.12e4T + 3.93e9T^{2} \)
89 \( 1 + 7.10e4T + 5.58e9T^{2} \)
97 \( 1 - 7.16e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.626303482525799322699926898789, −9.076533617642037680618332705063, −8.241670254048605798442779325963, −6.86083991825677683094661107640, −6.37396035705189731765425190603, −5.09888563039442534791156030724, −4.01729878308848391395145868618, −2.11953966260370855861839028408, −1.23163947144076272152493808390, 0, 1.23163947144076272152493808390, 2.11953966260370855861839028408, 4.01729878308848391395145868618, 5.09888563039442534791156030724, 6.37396035705189731765425190603, 6.86083991825677683094661107640, 8.241670254048605798442779325963, 9.076533617642037680618332705063, 9.626303482525799322699926898789

Graph of the $Z$-function along the critical line