Properties

Label 2-471-1.1-c5-0-117
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.3·2-s − 9·3-s + 76.0·4-s − 102.·5-s − 93.5·6-s + 106.·7-s + 457.·8-s + 81·9-s − 1.06e3·10-s − 490.·11-s − 684.·12-s + 992.·13-s + 1.10e3·14-s + 924.·15-s + 2.32e3·16-s − 81.9·17-s + 841.·18-s − 13.0·19-s − 7.81e3·20-s − 960.·21-s − 5.09e3·22-s − 4.49e3·23-s − 4.12e3·24-s + 7.43e3·25-s + 1.03e4·26-s − 729·27-s + 8.11e3·28-s + ⋯
L(s)  = 1  + 1.83·2-s − 0.577·3-s + 2.37·4-s − 1.83·5-s − 1.06·6-s + 0.823·7-s + 2.52·8-s + 0.333·9-s − 3.37·10-s − 1.22·11-s − 1.37·12-s + 1.62·13-s + 1.51·14-s + 1.06·15-s + 2.27·16-s − 0.0687·17-s + 0.612·18-s − 0.00830·19-s − 4.36·20-s − 0.475·21-s − 2.24·22-s − 1.77·23-s − 1.46·24-s + 2.37·25-s + 2.99·26-s − 0.192·27-s + 1.95·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 10.3T + 32T^{2} \)
5 \( 1 + 102.T + 3.12e3T^{2} \)
7 \( 1 - 106.T + 1.68e4T^{2} \)
11 \( 1 + 490.T + 1.61e5T^{2} \)
13 \( 1 - 992.T + 3.71e5T^{2} \)
17 \( 1 + 81.9T + 1.41e6T^{2} \)
19 \( 1 + 13.0T + 2.47e6T^{2} \)
23 \( 1 + 4.49e3T + 6.43e6T^{2} \)
29 \( 1 + 5.83e3T + 2.05e7T^{2} \)
31 \( 1 + 2.23e3T + 2.86e7T^{2} \)
37 \( 1 + 8.08e3T + 6.93e7T^{2} \)
41 \( 1 + 7.79e3T + 1.15e8T^{2} \)
43 \( 1 + 7.28e3T + 1.47e8T^{2} \)
47 \( 1 + 1.93e4T + 2.29e8T^{2} \)
53 \( 1 - 2.03e4T + 4.18e8T^{2} \)
59 \( 1 + 3.16e3T + 7.14e8T^{2} \)
61 \( 1 + 4.02e4T + 8.44e8T^{2} \)
67 \( 1 - 3.83e4T + 1.35e9T^{2} \)
71 \( 1 - 3.10e4T + 1.80e9T^{2} \)
73 \( 1 + 5.28e4T + 2.07e9T^{2} \)
79 \( 1 - 9.41e4T + 3.07e9T^{2} \)
83 \( 1 - 3.99e4T + 3.93e9T^{2} \)
89 \( 1 + 1.09e5T + 5.58e9T^{2} \)
97 \( 1 - 1.08e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57687438603730530479143386854, −8.281615526461933203997009664710, −7.76866713003604384107964865393, −6.76249564245075735046262526860, −5.66402144498148070768866760099, −4.86983886931989989369144095708, −3.97449834498293291846026255238, −3.39689338540081978307823839648, −1.75710942418682290778309437370, 0, 1.75710942418682290778309437370, 3.39689338540081978307823839648, 3.97449834498293291846026255238, 4.86983886931989989369144095708, 5.66402144498148070768866760099, 6.76249564245075735046262526860, 7.76866713003604384107964865393, 8.281615526461933203997009664710, 10.57687438603730530479143386854

Graph of the $Z$-function along the critical line