Properties

Label 2-471-1.1-c5-0-127
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.78·2-s − 9·3-s + 63.7·4-s + 84.2·5-s − 88.0·6-s − 182.·7-s + 311.·8-s + 81·9-s + 824.·10-s − 152.·11-s − 574.·12-s − 1.10e3·13-s − 1.78e3·14-s − 757.·15-s + 1.00e3·16-s − 1.62e3·17-s + 792.·18-s + 472.·19-s + 5.37e3·20-s + 1.64e3·21-s − 1.49e3·22-s − 3.96e3·23-s − 2.79e3·24-s + 3.96e3·25-s − 1.07e4·26-s − 729·27-s − 1.16e4·28-s + ⋯
L(s)  = 1  + 1.73·2-s − 0.577·3-s + 1.99·4-s + 1.50·5-s − 0.998·6-s − 1.40·7-s + 1.71·8-s + 0.333·9-s + 2.60·10-s − 0.380·11-s − 1.15·12-s − 1.81·13-s − 2.43·14-s − 0.869·15-s + 0.979·16-s − 1.36·17-s + 0.576·18-s + 0.300·19-s + 3.00·20-s + 0.812·21-s − 0.657·22-s − 1.56·23-s − 0.992·24-s + 1.26·25-s − 3.13·26-s − 0.192·27-s − 2.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 9.78T + 32T^{2} \)
5 \( 1 - 84.2T + 3.12e3T^{2} \)
7 \( 1 + 182.T + 1.68e4T^{2} \)
11 \( 1 + 152.T + 1.61e5T^{2} \)
13 \( 1 + 1.10e3T + 3.71e5T^{2} \)
17 \( 1 + 1.62e3T + 1.41e6T^{2} \)
19 \( 1 - 472.T + 2.47e6T^{2} \)
23 \( 1 + 3.96e3T + 6.43e6T^{2} \)
29 \( 1 - 3.57e3T + 2.05e7T^{2} \)
31 \( 1 + 4.26e3T + 2.86e7T^{2} \)
37 \( 1 - 5.75e3T + 6.93e7T^{2} \)
41 \( 1 + 1.99e4T + 1.15e8T^{2} \)
43 \( 1 - 1.71e4T + 1.47e8T^{2} \)
47 \( 1 - 2.61e4T + 2.29e8T^{2} \)
53 \( 1 - 2.59e4T + 4.18e8T^{2} \)
59 \( 1 + 4.76e3T + 7.14e8T^{2} \)
61 \( 1 + 4.41e4T + 8.44e8T^{2} \)
67 \( 1 - 3.38e4T + 1.35e9T^{2} \)
71 \( 1 - 5.83e4T + 1.80e9T^{2} \)
73 \( 1 + 5.54e4T + 2.07e9T^{2} \)
79 \( 1 + 5.07e4T + 3.07e9T^{2} \)
83 \( 1 - 2.54e4T + 3.93e9T^{2} \)
89 \( 1 - 1.01e5T + 5.58e9T^{2} \)
97 \( 1 + 1.94e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00441591621735744448232368479, −9.285454889006401073140452094827, −7.23538101762968054414963469364, −6.51444375022014465156845053279, −5.85953099241007046259994329459, −5.15018769477524536380630700528, −4.13830843005557897392325918484, −2.69309634598702925651142797455, −2.15680350996619613099872754162, 0, 2.15680350996619613099872754162, 2.69309634598702925651142797455, 4.13830843005557897392325918484, 5.15018769477524536380630700528, 5.85953099241007046259994329459, 6.51444375022014465156845053279, 7.23538101762968054414963469364, 9.285454889006401073140452094827, 10.00441591621735744448232368479

Graph of the $Z$-function along the critical line