Properties

Label 2-471-1.1-c5-0-123
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.26·2-s − 9·3-s + 53.9·4-s + 17.8·5-s − 83.4·6-s + 23.9·7-s + 202.·8-s + 81·9-s + 164.·10-s − 507.·11-s − 485.·12-s + 213.·13-s + 221.·14-s − 160.·15-s + 156.·16-s − 1.26e3·17-s + 750.·18-s − 1.82e3·19-s + 959.·20-s − 215.·21-s − 4.70e3·22-s + 2.30e3·23-s − 1.82e3·24-s − 2.80e3·25-s + 1.97e3·26-s − 729·27-s + 1.29e3·28-s + ⋯
L(s)  = 1  + 1.63·2-s − 0.577·3-s + 1.68·4-s + 0.318·5-s − 0.945·6-s + 0.184·7-s + 1.12·8-s + 0.333·9-s + 0.521·10-s − 1.26·11-s − 0.972·12-s + 0.349·13-s + 0.302·14-s − 0.183·15-s + 0.152·16-s − 1.06·17-s + 0.546·18-s − 1.16·19-s + 0.536·20-s − 0.106·21-s − 2.07·22-s + 0.909·23-s − 0.647·24-s − 0.898·25-s + 0.572·26-s − 0.192·27-s + 0.311·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 9.26T + 32T^{2} \)
5 \( 1 - 17.8T + 3.12e3T^{2} \)
7 \( 1 - 23.9T + 1.68e4T^{2} \)
11 \( 1 + 507.T + 1.61e5T^{2} \)
13 \( 1 - 213.T + 3.71e5T^{2} \)
17 \( 1 + 1.26e3T + 1.41e6T^{2} \)
19 \( 1 + 1.82e3T + 2.47e6T^{2} \)
23 \( 1 - 2.30e3T + 6.43e6T^{2} \)
29 \( 1 + 2.47e3T + 2.05e7T^{2} \)
31 \( 1 - 3.86e3T + 2.86e7T^{2} \)
37 \( 1 - 7.09e3T + 6.93e7T^{2} \)
41 \( 1 + 5.31e3T + 1.15e8T^{2} \)
43 \( 1 + 3.70T + 1.47e8T^{2} \)
47 \( 1 - 3.25e3T + 2.29e8T^{2} \)
53 \( 1 + 1.93e3T + 4.18e8T^{2} \)
59 \( 1 + 2.80e4T + 7.14e8T^{2} \)
61 \( 1 - 1.41e4T + 8.44e8T^{2} \)
67 \( 1 + 4.27e4T + 1.35e9T^{2} \)
71 \( 1 + 3.22e4T + 1.80e9T^{2} \)
73 \( 1 + 3.90e4T + 2.07e9T^{2} \)
79 \( 1 - 3.11e4T + 3.07e9T^{2} \)
83 \( 1 + 1.13e5T + 3.93e9T^{2} \)
89 \( 1 - 1.50e4T + 5.58e9T^{2} \)
97 \( 1 - 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20644947678630347269349096207, −8.828324841256524714575773063730, −7.58212286339600155097181931473, −6.49400264308041593990216460336, −5.85536650221438632643331296811, −4.91857842796717238663092983681, −4.25169755446414586930248361499, −2.90356250903744187612325890097, −1.90743392962276130709078292113, 0, 1.90743392962276130709078292113, 2.90356250903744187612325890097, 4.25169755446414586930248361499, 4.91857842796717238663092983681, 5.85536650221438632643331296811, 6.49400264308041593990216460336, 7.58212286339600155097181931473, 8.828324841256524714575773063730, 10.20644947678630347269349096207

Graph of the $Z$-function along the critical line