Properties

Label 2-471-1.1-c5-0-118
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.93·2-s − 9·3-s + 47.8·4-s + 39.2·5-s − 80.4·6-s − 156.·7-s + 142.·8-s + 81·9-s + 350.·10-s − 13.1·11-s − 431.·12-s + 140.·13-s − 1.39e3·14-s − 352.·15-s − 262.·16-s + 713.·17-s + 724.·18-s − 12.9·19-s + 1.87e3·20-s + 1.40e3·21-s − 117.·22-s + 629.·23-s − 1.27e3·24-s − 1.58e3·25-s + 1.25e3·26-s − 729·27-s − 7.49e3·28-s + ⋯
L(s)  = 1  + 1.58·2-s − 0.577·3-s + 1.49·4-s + 0.701·5-s − 0.912·6-s − 1.20·7-s + 0.784·8-s + 0.333·9-s + 1.10·10-s − 0.0327·11-s − 0.864·12-s + 0.230·13-s − 1.90·14-s − 0.404·15-s − 0.256·16-s + 0.598·17-s + 0.526·18-s − 0.00823·19-s + 1.04·20-s + 0.697·21-s − 0.0517·22-s + 0.248·23-s − 0.453·24-s − 0.508·25-s + 0.364·26-s − 0.192·27-s − 1.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 8.93T + 32T^{2} \)
5 \( 1 - 39.2T + 3.12e3T^{2} \)
7 \( 1 + 156.T + 1.68e4T^{2} \)
11 \( 1 + 13.1T + 1.61e5T^{2} \)
13 \( 1 - 140.T + 3.71e5T^{2} \)
17 \( 1 - 713.T + 1.41e6T^{2} \)
19 \( 1 + 12.9T + 2.47e6T^{2} \)
23 \( 1 - 629.T + 6.43e6T^{2} \)
29 \( 1 + 8.69e3T + 2.05e7T^{2} \)
31 \( 1 + 1.06e3T + 2.86e7T^{2} \)
37 \( 1 + 1.21e4T + 6.93e7T^{2} \)
41 \( 1 - 1.45e4T + 1.15e8T^{2} \)
43 \( 1 + 1.53e3T + 1.47e8T^{2} \)
47 \( 1 + 1.46e4T + 2.29e8T^{2} \)
53 \( 1 + 2.83e4T + 4.18e8T^{2} \)
59 \( 1 - 1.65e4T + 7.14e8T^{2} \)
61 \( 1 + 1.65e4T + 8.44e8T^{2} \)
67 \( 1 - 8.96e3T + 1.35e9T^{2} \)
71 \( 1 - 7.69e3T + 1.80e9T^{2} \)
73 \( 1 + 2.25e4T + 2.07e9T^{2} \)
79 \( 1 + 9.88e4T + 3.07e9T^{2} \)
83 \( 1 - 1.08e5T + 3.93e9T^{2} \)
89 \( 1 + 4.68e4T + 5.58e9T^{2} \)
97 \( 1 + 6.44e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.910401122543040133071694995002, −9.168038808162153128023264578403, −7.43326333677690596912071893656, −6.46901456239880192050408173023, −5.86272295758149033060564950406, −5.18308183653788195736512418411, −3.90839272610548554775365153113, −3.11320076684392116113878205954, −1.80925581664193570715972339843, 0, 1.80925581664193570715972339843, 3.11320076684392116113878205954, 3.90839272610548554775365153113, 5.18308183653788195736512418411, 5.86272295758149033060564950406, 6.46901456239880192050408173023, 7.43326333677690596912071893656, 9.168038808162153128023264578403, 9.910401122543040133071694995002

Graph of the $Z$-function along the critical line