Properties

Label 2-471-1.1-c5-0-77
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.20·2-s − 9·3-s − 14.3·4-s − 81.8·5-s − 37.8·6-s + 101.·7-s − 194.·8-s + 81·9-s − 344.·10-s + 52.0·11-s + 129.·12-s + 129.·13-s + 426.·14-s + 737.·15-s − 359.·16-s + 1.25e3·17-s + 340.·18-s + 2.12e3·19-s + 1.17e3·20-s − 914.·21-s + 218.·22-s + 2.25e3·23-s + 1.75e3·24-s + 3.58e3·25-s + 544.·26-s − 729·27-s − 1.45e3·28-s + ⋯
L(s)  = 1  + 0.742·2-s − 0.577·3-s − 0.448·4-s − 1.46·5-s − 0.428·6-s + 0.783·7-s − 1.07·8-s + 0.333·9-s − 1.08·10-s + 0.129·11-s + 0.258·12-s + 0.212·13-s + 0.581·14-s + 0.845·15-s − 0.351·16-s + 1.05·17-s + 0.247·18-s + 1.35·19-s + 0.656·20-s − 0.452·21-s + 0.0963·22-s + 0.889·23-s + 0.621·24-s + 1.14·25-s + 0.157·26-s − 0.192·27-s − 0.350·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 4.20T + 32T^{2} \)
5 \( 1 + 81.8T + 3.12e3T^{2} \)
7 \( 1 - 101.T + 1.68e4T^{2} \)
11 \( 1 - 52.0T + 1.61e5T^{2} \)
13 \( 1 - 129.T + 3.71e5T^{2} \)
17 \( 1 - 1.25e3T + 1.41e6T^{2} \)
19 \( 1 - 2.12e3T + 2.47e6T^{2} \)
23 \( 1 - 2.25e3T + 6.43e6T^{2} \)
29 \( 1 + 5.14e3T + 2.05e7T^{2} \)
31 \( 1 + 5.88e3T + 2.86e7T^{2} \)
37 \( 1 + 8.33e3T + 6.93e7T^{2} \)
41 \( 1 - 1.41e3T + 1.15e8T^{2} \)
43 \( 1 - 727.T + 1.47e8T^{2} \)
47 \( 1 + 2.56e3T + 2.29e8T^{2} \)
53 \( 1 + 9.93e3T + 4.18e8T^{2} \)
59 \( 1 + 4.30e3T + 7.14e8T^{2} \)
61 \( 1 - 5.54e4T + 8.44e8T^{2} \)
67 \( 1 - 3.97e4T + 1.35e9T^{2} \)
71 \( 1 + 3.66e4T + 1.80e9T^{2} \)
73 \( 1 - 1.53e4T + 2.07e9T^{2} \)
79 \( 1 + 3.74e4T + 3.07e9T^{2} \)
83 \( 1 + 1.01e5T + 3.93e9T^{2} \)
89 \( 1 - 8.68e3T + 5.58e9T^{2} \)
97 \( 1 + 6.64e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.809429658444649148969908305018, −8.755445406308491357980537822938, −7.82090191841817423729111218559, −7.08309266106877553075967222774, −5.55465720860498530115620458459, −5.02538591405188060976615417248, −3.94800166722276360045607081115, −3.30630982391857875079715837822, −1.16301809417008211318311700128, 0, 1.16301809417008211318311700128, 3.30630982391857875079715837822, 3.94800166722276360045607081115, 5.02538591405188060976615417248, 5.55465720860498530115620458459, 7.08309266106877553075967222774, 7.82090191841817423729111218559, 8.755445406308491357980537822938, 9.809429658444649148969908305018

Graph of the $Z$-function along the critical line