Properties

Label 2-471-1.1-c5-0-85
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.78·2-s − 9·3-s − 24.2·4-s + 24.4·5-s − 25.0·6-s − 110.·7-s − 156.·8-s + 81·9-s + 67.9·10-s + 131.·11-s + 218.·12-s + 140.·13-s − 307.·14-s − 219.·15-s + 341.·16-s + 1.63e3·17-s + 225.·18-s + 262.·19-s − 592.·20-s + 996.·21-s + 365.·22-s + 590.·23-s + 1.40e3·24-s − 2.52e3·25-s + 390.·26-s − 729·27-s + 2.68e3·28-s + ⋯
L(s)  = 1  + 0.491·2-s − 0.577·3-s − 0.758·4-s + 0.437·5-s − 0.283·6-s − 0.854·7-s − 0.864·8-s + 0.333·9-s + 0.214·10-s + 0.327·11-s + 0.437·12-s + 0.230·13-s − 0.419·14-s − 0.252·15-s + 0.333·16-s + 1.37·17-s + 0.163·18-s + 0.166·19-s − 0.331·20-s + 0.493·21-s + 0.161·22-s + 0.232·23-s + 0.499·24-s − 0.808·25-s + 0.113·26-s − 0.192·27-s + 0.647·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 2.78T + 32T^{2} \)
5 \( 1 - 24.4T + 3.12e3T^{2} \)
7 \( 1 + 110.T + 1.68e4T^{2} \)
11 \( 1 - 131.T + 1.61e5T^{2} \)
13 \( 1 - 140.T + 3.71e5T^{2} \)
17 \( 1 - 1.63e3T + 1.41e6T^{2} \)
19 \( 1 - 262.T + 2.47e6T^{2} \)
23 \( 1 - 590.T + 6.43e6T^{2} \)
29 \( 1 - 990.T + 2.05e7T^{2} \)
31 \( 1 - 5.64e3T + 2.86e7T^{2} \)
37 \( 1 + 6.96e3T + 6.93e7T^{2} \)
41 \( 1 + 9.28e3T + 1.15e8T^{2} \)
43 \( 1 + 7.13e3T + 1.47e8T^{2} \)
47 \( 1 - 1.93e4T + 2.29e8T^{2} \)
53 \( 1 - 8.12e3T + 4.18e8T^{2} \)
59 \( 1 + 4.76e4T + 7.14e8T^{2} \)
61 \( 1 - 1.75e4T + 8.44e8T^{2} \)
67 \( 1 + 3.07e4T + 1.35e9T^{2} \)
71 \( 1 - 2.34e4T + 1.80e9T^{2} \)
73 \( 1 + 4.79e4T + 2.07e9T^{2} \)
79 \( 1 + 6.07e4T + 3.07e9T^{2} \)
83 \( 1 - 1.13e5T + 3.93e9T^{2} \)
89 \( 1 - 1.21e5T + 5.58e9T^{2} \)
97 \( 1 + 8.63e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.821635368593833391179112396975, −9.103216707657089674940033682335, −7.957328059461559298981569999567, −6.64780801632413371117897739549, −5.87224965459814040532867102478, −5.12533663036164767220508560701, −3.94685660291359824966914155766, −3.04272748041030195007741694078, −1.22266088618573924231656703935, 0, 1.22266088618573924231656703935, 3.04272748041030195007741694078, 3.94685660291359824966914155766, 5.12533663036164767220508560701, 5.87224965459814040532867102478, 6.64780801632413371117897739549, 7.957328059461559298981569999567, 9.103216707657089674940033682335, 9.821635368593833391179112396975

Graph of the $Z$-function along the critical line